일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수학질문
- 수열의 극한
- 이정근
- 수학2
- 행렬
- 로그함수의 그래프
- 행렬과 그래프
- 여러 가지 수열
- 적분과 통계
- 함수의 극한
- 함수의 연속
- 수학1
- 경우의 수
- 정적분
- 접선의 방정식
- 미분
- 중복조합
- 심화미적
- 확률
- 이차곡선
- 기하와 벡터
- 수악중독
- 수능저격
- 함수의 그래프와 미분
- 도형과 무한등비급수
- 수열
- 적분
- 수학질문답변
- 수만휘 교과서
- 미적분과 통계기본
- Today
- Total
목록수학2 (267)
수악중독
갑이 \(1670\rm m\) 떨어진 위치에 있는 금속으로 된 목표물에 총으로 사격을 했는데, 발사한 후 \(7\)초가 지나서 탄환이 적중한 소리를 들었다. 을은 갑으로부터 \(998\rm m\), 목표물로부터 \(2000\rm m\) 떨어진 곳에서 갑이 발사한 총소리를 듣고 \(5\)초 후에 탄환이 적중한 소리를 들었다. 탄환의 속도와 소리의 속도가 일정할 때, 탄환의 속도를 구하시오. (단, 탄환은 직선으로 날아가며 속도의 단위는 \(\rm m\)/초이다.) 정답 835
무리방정식 \(\sqrt{2-\sqrt{2-x}}=x+a\) 가 실근을 갖기 위한 상수 \(a\) 의 최댓값과 최솟값을 각각 \(M, \; m\) 이라 할 때, \(M+m\) 의 값은? ① \(1\) ② \(\sqrt {2}\) ③ \(1+\sqrt{2}\) ④ \(2+\sqrt{2}\) ⑤ \(3+\sqrt{2}\) 지금 보니 이 문제는 보기에 오류가 있네요.. 지적해 주신 "신" 님께 감사드립니다. 그런 오류가 있는지도 모르고 대충 풀이를 올린 점 사과드립니다. 그럴 것 같은 풀이가 아니라 정확한 풀이를 올리도록 노력하겠습니다. 꾸벅~~~ 여러분도 이 문제의 보기에 정답이 왜 없는지 한 번 찾아보시기 바랍니다. 궁금하신 분들은 풀이 보기를 눌러 보세요... 정답 없음 "신" 님께서 지적해 주신대로 접..
함수 \(f(x)\) 는 임의의 실수 \(x,\;y\) 에 대하여 \[ f(x+y) = f(x) +f(2y+1) - (x+1)y\] 를 만족한다. 함수 \(f(x)\) 가 모든 실수 \(x\) 에 대하여 연속일 필요충분조건은 \(f(x)\) 가 \(x=\Box\) 에서 연속이다. \(\Box\) 안에 알맞은 값은? ① \(0\) ② \(1\) ③ \(2\) ④ \(3\) ⑤ \(4\) 정답 ②
길이가 \(2\) 인 선분 \(\rm AB\) 의 연장선 위에 동점 \(\rm P\) 가 점 \(\rm B\) 에 대하여 점 \(\rm A\) 의 반대쪽에 있다. 선분 \(\rm AP\) 를 지름으로 하는 원 위에 \(\overline {\rm BP}=\overline {\rm PQ}\) 인 점 \(\rm Q\) 를 잡아 선분 \(\rm AB\) 의 연장선에 내린 수선의 발을 \(\rm R\) 이라 한다. 점 \(\rm P\) 가 점 \(\rm B\) 로부터 한없이 멀어져 갈 때, \(\overline {\rm BR}\) 의 극한값은? ① \(1\) ② \(\Large \frac{3}{2}\) ③ \(2\) ④ \(3\) ⑤ \(4\) 정답 ③
함수 \(f\left( x \right) = \left\{ {\begin{array}{ll}{ - {x^2} + 2x + a}&{(x > 2)}\\{x + 2}&{(x \le 2)}\end{array}} \right.\) 가 닫힌구간 \([1,\;4]\) 에서 최댓값을 갖지 않도록 하는 상수 \(a\) 값의 범위는? ① \(a>3\) ② \(a\ge 3\) ③ \(a>4\) ④ \(a\le 4\) ⑤ \(a\ge 4\) 정답 ③
곡선 \(y=x^2\) 위에 두 점 \({\rm P}\left (a,\;a^2 \right ), \;\;{\rm Q}\left ( b,\; b^2 \right )\) 이 있다. 원점 \(\rm O\)와 점 \({\rm A}(1,\;1)\) 을 지나는 직선과 두 점 \(\rm P,\;Q\) 를 지나는 직선의 교점을 \(\rm G\) 라고 하자. \(\overline {\rm PQ} = \sqrt{2}\) 를 만족시키면서 점 \(\rm P\) 가 원점 \(\rm O\) 에 한없이 가까워질 때, 교점 \(\rm G\)가 한없이 가까워지는 점의 좌표는? (단, \(a
모든 실수 \(x\) 에 대하여 \(f(x)\) 가 \(f(x)= \sum \limits _{k=1}^{\infty} {\Large \frac{x^m}{\left ( 1+x^2 +x^4 \right ) ^{k-1}}} \) 으로 정의될 때, \(f(x)\) 가 \(x=0\) 에서 연속이 되기 위한 자연수 \(m\) 의 최솟값은? ① \(2\) ② \(3\) ③ \(4\) ④ \(5\) ⑤ \(6\) 정답 ②
실수 전체에서 연속인 함수 \(f(x)\) 에 대하여 방정식 \(f(x)=f(x+1)\) 이 중간값의 정리에 의해 \(-1
함수 \(f(x)\) 에 대하여 \(\lim \limits _{x \to 0} {\Large \frac {f(x)-1}{x}} =0\) 일 때, 에서 옳은 것을 모두 고른 것은? ㄱ. \(f(0)=1\) ㄴ. \(\lim \limits _{x \to 0} f(x) =0\) ㄷ. \( \lim \limits _{h \to 0} \{ f(0+h)-f(0-h)\} =0\) ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ②