일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- 수열의 극한
- 함수의 그래프와 미분
- 경우의 수
- 이정근
- 중복조합
- 기하와 벡터
- 수열
- 미적분과 통계기본
- 접선의 방정식
- 행렬과 그래프
- 로그함수의 그래프
- 함수의 연속
- 수능저격
- 수학1
- 함수의 극한
- 미분
- 적분과 통계
- 여러 가지 수열
- 수만휘 교과서
- 수학질문답변
- 수학2
- 이차곡선
- 정적분
- 수학질문
- 행렬
- 적분
- 수악중독
- 도형과 무한등비급수
- 심화미적
- 확률
- Today
- Total
목록적분과 통계 (70)
수악중독
주머니에 \(1, \;1, \;2,\;3,\;4\) 의 숫자가 하나씩 적혀 있는 \(5\) 개의 공이 들어 있다. 이 주머니에서 임의로 \(4\) 개의 공을 동시에 꺼내어 임의로 일렬로 나열하고, 나열된 순서대로 공에 적혀 있는 수를 \(a. \; b,\; c,\; d\) 라 할 때, \( a \le b \le c \le d\) 일 확률은? ① \(\dfrac{1}{15}\) ② \(\dfrac{1}{12}\) ③ \(\dfrac{1}{9}\) ④ \(\dfrac{1}{6}\) ⑤ \(\dfrac{1}{3}\) 정답 ①
함수 \(f(x)\) 를 \[f\left( x \right) = \left\{ {\begin{array}{ll}{\left| {\sin x} \right| - \sin x}&{\left( { - \frac{7}{2}\pi \le x < 0} \right)}\\{\sin x - \left| {\sin x} \right|}&{\left( {0 \le x \le \frac{7}{2}\pi } \right)}\end{array}} \right.\] 라 하자. 닫힌 구간 \(\left [ - \dfrac{7}{2} \pi , \; \dfrac{7}{2} \pi \right ]\) 에 속하는 모든 실수 \(x\) 에 대하여 \(\displaystyle \int_a^x f(t) dt \ge 0\) 이 되도록 하는 실..
다음 조건을 만족시키는 \(2\) 이상의 자연수 \(a, \;b, c,\;d\) 의 모든 순서쌍 \(a, \;b, \;c,\;d)\) 의 개수를 구하시오. (가) \(a+b+c+d=20\)(나) \(a, \; b,\; c,\; d\) 모두 \(d\) 의 배수이다. 정답 \(32\)
구간 \((0,\; \infty)\) 에서 정의된 함수 \(f(x)=\dfrac{p}{x}\; (p>1)\) 의 그래프는 그림과 같다. 곡선 \(y=f(x)\) 와 \(x\) 축 및 두 직선 \(x=1, \; x=p\) 로 둘러싸인 부분을 \(x\) 축의 둘레로 회전시켜 생기는 회전체의 부피가 \(20\pi\) 일 때, 상수 \(p\) 의 값은? ① \(\dfrac{17}{4}\) ② \(\dfrac{9}{2}\) ③ \(\dfrac{19}{4}\) ④ \(5\) ⑤ \(\dfrac{21}{4}\) 정답 ④
양의 실수 \(k\) 에 대하여 곡선 \(y=k \ln x\) 와 직선 \(y=x\) 가 접할 때, 곡선 \(y= k \ln x\), 직선 \(y=x\) 및 \(x\) 축으로 둘러싸인 부분의 넓이는 \(ae^2 -be\) 이다. \(100ab\) 의 값을 구하시오. (단, \(a\) 와 \(b\) 는 유리수이다.) 정답 \(50\)
자연수 \(n\) 에 대하여 함수 \(f(n)=\displaystyle \int _1^n x^3 e^{x^2} dx\) 라 할 때, \(\dfrac{f(5)}{f(3)}\) 의 값은? ① \(e^{14}\) ② \(2 e^{16}\) ③ \(3e^{16}\) ④ \(4e^{18}\) ⑤ \(5e^{18}\) 정답 ③
그림과 같이 중심각의 크기가 \(\dfrac{\pi}{2}\) 이고, 반지름의 길이가 \(8\) 인 부채꼴 \(\rm OAB\) 가 있다. \(2\) 이상의 자연수 \(n\) 에 대하여 호 \(\rm AB\) 를 \(n\) 등분한 각 분점을 점 \(\rm A\) 에서 가까운 것부터 차례로 \(\rm P_1 , \; P_2, \; P_3 , \; \cdots , \; P_{\it k}\) 이라 하자. \( 1 \le k \le n-1\) 인 자연수 \(k\) 에 대하여 점 \(\rm B\) 에서 선분 \(\rm OP_{\it k}\) 에 내린 수선의 발을 \(\rm Q_{\it k}\) 라 하고, 삼각형 \(\rm OQ_{\it k}B\) 의 넓이를 \(S_k\) 라 하자. \(\lim \limits_{n..
주머니 속에 \(1\) 의 숫자가 적혀 있는 공 \(1\) 개, \(2\) 의 숫자가 적혀 있는 공 \(2\) 개, \(3\) 의 숫자가 적혀 있는 공이 \(5\) 개가 들어 있다. 이 주머니에서 임의로 \(1\) 개의 공을 꺼내어 공에 적혀 있는 수를 확인한 후 다시 넣는다. 이와 같은 시행을 \(2\) 번 반복할 때, 꺼낸 공에 적혀 있는 수의 평균을 \(\overline{X}\) 라 하자. \({\rm P} \left ( \overline{X} =2 \right ) \) 의 값은? ① \(\dfrac{5}{32}\) ② \(\dfrac{11}{64}\) ③ \(\dfrac{3}{16}\) ④ \(\dfrac{13}{64}\) ⑤ \(\dfrac{7}{32}\) 정답 ⑤
실수 전체의 집합에서 미분가능한 함수 \(f(x)\) 가 다음 조건을 만족시킨다. (가) 모든 실수 \(x\) 에 대하여 \(1 \leq f'(x) \leq 3\) 이다. (나) 모든 정수 \(n\) 에 대하여 함수 \(y=f(x)\) 의 그래프는 점 \((4n, \;8n)\), 점 \((4n+1, \;8n+2)\), 점 \( (4n+2, \;8n+5)\), 점 \( (4n+3, \;8n+7)\) 을 모두 지난다. (다) 모든 정수 \(k\) 에 대하여 닫힌 구간 \([2k, \; 2k+1]\) 에서 함수 \(f(x)\) 의 그래프는 각각 이차함수의 그래프의 일부이다. \(\displaystyle \int_{3}^{6} f(x) dx=a\) 라 할 때, \(6a\) 의 값을 구하시오. 정답 \(167\)