일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 접선의 방정식
- 여러 가지 수열
- 이정근
- 도형과 무한등비급수
- 경우의 수
- 수학2
- 수학1
- 미적분과 통계기본
- 정적분
- 함수의 그래프와 미분
- 수학질문
- 미분
- 행렬과 그래프
- 적분과 통계
- 함수의 연속
- 수악중독
- 수열
- 수열의 극한
- 행렬
- 중복조합
- 확률
- 수능저격
- 함수의 극한
- 로그함수의 그래프
- 이차곡선
- 기하와 벡터
- 수학질문답변
- 적분
- 심화미적
- 수만휘 교과서
- Today
- Total
목록수학2 (267)
수악중독
좌표공간에서 구 \(S\) 는 \(xy\) 평면에 접하고 두 점 \({\rm A}(0,\;0,\;1),\;\; {\rm B} (0,\;1,\;2)\) 를 지난다. 이 때, \(S\) 의 반지름의 길이의 최댓값과 최솟값의 차는? ① \(1\) ② \(2\) ③ \(3\) ④ \(4\) ⑤ \(5\) 정답 ④
두 개의 구 \[x^2 +y^2 +z^2 -6x-8y-2z+1=0\] \[x^2 +y^2 +z^2+2x+4y+6z-1=0\] 의 교선을 품으며 원점을 지나는 구의 중심과 반지름의 길이를 순서대로 적은 것은? ① \((1,\;1,\;1),\;\;\sqrt{3}\) ② \((1,\;-1,\;1),\;\;\sqrt{3}\) ③ \((1,\;1,\;-1),\;\;\sqrt{3}\) ④ \((1,\;1,\;-1),\;\;2\sqrt{3}\) ⑤ \((1,\;-1,\;-1),\;\;2\sqrt{3}\) 정답 ③
공간에서 두 점 \({\rm A}(1,\;-3,\;2),\;\; {\rm B}(-2,\;0,\;1)\) 이 주어졌을 때, \(\overline {\rm AP} : \overline{\rm BP} = 2:1\) 이 되는 점 \({\rm P}(x,\;y,\;z)\) 의 자취와 \(xy\) 평면과의 교선의 방정식은 중심이 \((a,\;b)\) 이고 반지름의 길이가 \(r\) 인 원이다. 이때, \(a+b+r^2\) 의 값은? ① \(-3\) ② \(-1\) ③ \(\dfrac{7}{3}\) ④ \(4\) ⑤ \(6\) 정답 ⑤
점 \({\rm A}(1,\;1,\;-1)\) 과 직선 \(\dfrac{x-2}{2}=-y-1=z-1\) 위의 두 점 \(\rm B,\;C\) 를 꼭짓점으로 하는 정삼각형 \(\rm ABC\) 의 넓이를 \(S\) 라 할 때, \(S^2\) 의 값을 구하시오. 정답 3
그림과 같이 반지름의 길이가 모두 \(\sqrt{3}\) 이고 높이가 서로 다른 세 원기둥이 서로 외접하며 한 평면 \(\alpha\) 위에 놓여 있다. 평면 \(\alpha\) 와 만나지 않는 세 원기둥의 밑면의 중심을 각각 \(\rm P,\;Q,\;R\) 라 할 때, 삼각형 \(\rm QPR\) 는 이등변삼각형이고, 평면 \(\rm QPR\) 와 평면 \(\alpha\) 가 이루는 각의 크기는 \(60^o\) 이다. 세 원기둥의 높이를 각각 \(8,\; a,\; b\) 라 할 때, \(a+b\) 의 값을 구하시오. (단, \(8
\( n\) 차 다항식 \( f(x) \) 가 다음 세 조건을 만족한다. (가) \(f(0)=1\) (나) \( \displaystyle \int_0^1 f(x) {\rm d} x = 2 \) (다) \( \displaystyle \int_0^1 xf(x) {\rm d}x = \int_0^1 x^2 f(x) {\rm d} x = \cdots = \int_0^1 x^n f(x) {\rm d } x = 0 \) 이 때, \( \displaystyle \int_0^1 \left\{ f(x) \right\}^2 {\rm d}x \) 의 값은? ① \( 1 \) ② \( 2 \) ③ \( n \) ④ \( \dfrac{1}{n+1} \) ⑤ \( \dfrac{1}{n} \) 정답 ②
좌표공간에서 집합 \(\left \{ (x,\;y,\;z) \;{\Large \vert}\; x^2 +(z-1)^2 \le 1,\;\; y=0,\;\; 0 \le z \le 1 \right \}\) 이 나타내는 도형을 \(C\) 라 하자. 점 \({\rm A}(0,\;-1,\;2)\) 와 도형 \(C\) 위의 점 \(\rm P\) 를 지나는 직선이 \(xy\) 평면과 만나는 점을 \(\rm Q\) 라 하면 점 \(\rm Q\) 가 나타내는 도형의 넓이는 \(\dfrac{b}{a}\) 이다. 이때, \(a+b\) 의 값을 구하시오. (단, \(a,\;b\) 는 서로소인 자연수이다.) 정답 11
점근선의 방정식이 \(y= \sqrt{2} x,\;y=-\sqrt{2} x\) 이고 \(x\) 축과 만나는 두 점 사이의 거리가 \(4\) 인 쌍곡선이 있다. 원점 \(\rm O\) 와 이 쌍곡선 위의 한 점 \(\rm P\) 를 잇는 선분 \(\rm OP\) 의 길이를 \(d\) 라 할 때, \(\overline {\rm PF'} \cdot \overline {\rm PF} \) 의 값을 \(d\) 를 이용하여 나타내면? (단, \(\rm F,\;F'\) 는 이 쌍곡선의 초점이다.) ① \(4d\) ② \(4+d^2\) ③ \(4+2d\) ④ \(2d\) ⑤ \(d^2\) 정답 ②
그림과 같이 직선 \(y=x-1\) 과 타원 \({\Large \frac{x^2}{m}} + {\Large \frac{y^2}{n}} = 1\) \( (m>n>0) \) 이 서로 다른 두 점 \(\rm M,\;N\) 에서 만난다. 원점 \(\rm O\) 와 선분 \(\rm MN\) 의 중점 \(\rm P\) 를 잇는 직선이 \(x\) 축과 이루는 양의 각이 \(150^o\) 일 때, \(\Large \frac{m}{n}\) 의 값은? ① \(\Large \frac{6}{5}\) ② \(\Large \frac{4}{3}\) ③ \(\sqrt{2}\) ④ \(\sqrt{3}\) ⑤ \(\Large \frac{3 \sqrt{3}}{2}\) 정답 ④