관리 메뉴


수악중독

미적분과 통계기본_함수의 극한_극한의 활용_난이도 상 본문

(9차) 미적분 I 문제풀이/함수의 극한 및 연속

미적분과 통계기본_함수의 극한_극한의 활용_난이도 상

수악중독 2009. 9. 9. 15:23
길이가 \(2\) 인 선분 \(\rm AB\) 의 연장선 위에 동점 \(\rm P\) 가 점 \(\rm B\) 에 대하여 점 \(\rm A\) 의 반대쪽에 있다. 선분 \(\rm AP\) 를 지름으로 하는 원 위에 \(\overline {\rm BP}=\overline {\rm PQ}\) 인 점 \(\rm Q\) 를 잡아 선분 \(\rm AB\) 의 연장선에 내린 수선의 발을 \(\rm R\) 이라 한다. 점 \(\rm P\) 가 점 \(\rm B\) 로부터 한없이 멀어져 갈 때, \(\overline {\rm BR}\) 의 극한값은?

① \(1\)           ② \(\Large \frac{3}{2}\)          ③ \(2\)          ④ \(3\)          ⑤ \(4\)


Comments