일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 로그함수의 그래프
- 수열의 극한
- 행렬
- 함수의 그래프와 미분
- 함수의 극한
- 수열
- 중복조합
- 미적분과 통계기본
- 기하와 벡터
- 수학1
- 이정근
- 적분과 통계
- 수학질문답변
- 적분
- 수학2
- 이차곡선
- 심화미적
- 확률
- 도형과 무한등비급수
- 정적분
- 접선의 방정식
- 미분
- 여러 가지 수열
- 수능저격
- 수만휘 교과서
- 수악중독
- 함수의 연속
- 경우의 수
- 수학질문
- 행렬과 그래프
- Today
- 696
- Total
- 1,957,395
목록이차곡선 (52)
수악중독
교재다운로드 1. 포물선의 방정식 2. 포물선의 평행이동 3. 타원의 방정식 4. 타원의 평행이동 5. 쌍곡선의 방정식 6. 쌍곡선의 점근선 7. 쌍곡선의 평행이동 8. 이차곡선과 직선의 위치 관계 9. 포물선의 접선 10. 타원의 접선 11. 쌍곡선의 접선 다음
$0$ 이 아닌 실수 $p$ 에 대하여 좌표평면 위의 두 포물선 $x^2=2y$ 와 $\left ( y+ \dfrac{1}{2} \right )^2 = 4px$ 에 동시에 접하는 직선의 개수를 $f(p)$ 라 하자. $\lim \limits_{p \to k+}f(p)>f(k)$ 를 만족시키는 실수 $k$ 의 값은? ① $-\dfrac{\sqrt{3}}{3}$ ② $-\dfrac{2\sqrt{3}}{3}$ ③ $-\dfrac{\sqrt{3}}{9}$ ④ $-\dfrac{2\sqrt{3}}{9}$ ⑤ $\dfrac{\sqrt{3}}{3}$ 정답 ③
1. 포물선 - 개념정리 2. 포물선 - 기본문제 3. 포물선 - 대표유형 01, 02, 03 4. 포물선 - 대표유형 04 5. 포물선 - 대표유형 05 6. 타원 - 개념정리(1) 7. 타원 - 개념정리(2) 8. 타원 - 기본문제 9. 타원 - 대표유형 06 10. 타원 - 대표유형 07 11. 타원 - 대표유형 08 12. 쌍곡선 - 개념정리(1) 13. 쌍곡선 - 개념정리(2) 14. 쌍곡선 - 기본문제 15. 쌍곡선 - 대표유형 09 16. 쌍곡선 - 대표유형 10 17. 쌍곡선 - 대표유형 11 18. 쌍곡선 - 대표유형 12 19. 이차곡선의 방정식 - 개념정리 & 대표유형 13 다음
그림과 같이 포물선 \(y^2=8x\) 위의 네 점 \(\rm A, \; B,\;C,\;D\) 를 꼭짓점으로 하는 사각형 \(\rm ABCD\) 에 대하여 두 선분 \(\rm AB\) 와 \(\rm CD\) 가 각각 \(y\) 축과 평행하다. 사각형 \(\rm ABCD\) 의 두 대각선의 교점이 포물선의 초점 \(\rm F\) 와 일치하고 \(\overline{\rm DF}=6\) 일 때, 사각형 \(\rm ABCD\) 의 넓이는? ① \(14\sqrt{2}\) ② \(15\sqrt{2}\) ③ \(16\sqrt{2}\) ④ \(17\sqrt{2}\) ⑤ \(18\sqrt{2}\) 정답 ⑤
그림과 같이 두 초점 \(\rm F, \;F'\) 이 \(x\) 축 위에 있는 타원 \( \dfrac{x^2}{49}+\dfrac{y^2}{a}=1\) 위의 점 \(\rm P\) 가 \(\overline{\rm FP}=9\) 를 만족시킨다. 점 \(\rm F\) 에서 선분 \(\rm PF'\) 에 내린 수선의 발 \(\rm H\) 에 대하여 \(\overline{\rm FH}=6\sqrt{2}\) 일 때, 상수 \(a\) 의 값은? ① \(29\) ② \(30\) ③ \(31\) ④ \(32\) ⑤ \(33\) 정답 ②
좌표평면에서 포물선 \(C_1 : x^2=4y\) 의 초점을 \(\rm F_1\), 포물선 \(C_2 : y^2=8x\) 의 초점을 \(\rm F_2\) 라 하자. 점 \(\rm P\) 는 다음 조건을 만족시킨다. (가) 중심이 \(C_1\) 위에 있고, 점 \(\rm F_1\) 을 지나는 원과 중심이 \(C_2\) 위에 있고, 점 \(\rm F_2\) 를 지나는 원의 교점이다. (나) 제\(3\)사분면에 있는 점이다. 원점 \(\rm O\) 에 대하여 \(\overline{\rm OP}^2\) 의 최댓값을 구하시오. 정답 \(5\)
타원 \(E:\dfrac{x^2}{36}+\dfrac{y^2}{10}=1\) 의 두 초점을 \(\rm F, \;F'\) 이라 하자. 타원 \(E\) 위의 점 \(\rm P\) 에 대하여 그림과 같이 선분 \(\rm F'P\) 의 연장선 위에 \(\overline{\rm PF}=\overline{\rm PQ}\) 인 점 \(\rm Q\) 를 타원의 외부에 정하고, 선분 \(\rm FQ\) 의 중점을 \(\rm R\) 라 하자. 점 \(\rm P\) 가 타원 \(E\) 위의 모든 점을 지날 때, 점 \(\rm R\) 가 나타내는 도형의 둘레의 길이는? ① \(6\pi\) ② \(9\pi\) ③ \(12\pi\) ④ \(15\pi\) ⑤ \(18\pi\) 정답 ⑤
좌표평면 위에 두 점 \({\rm F}_1(c, \;0), \; {\rm F'}(-c, \;0)\;(c>0)\) 을 초점으로 하는 타원이 있다. 이 타원의 장축의 양 끝점 중 \(\rm F_1\) 에 가까운 점을 \(\rm A\) 라 할 때, \(\overline{\rm AF_1}=1\) 이다. \(\rm F_1\) 을 지나고 기울기가 \(-3\) 인 직선이 티원과 제\(1\)사분면에서 만나는 점을 \(\rm P\) 라 할 때, 직선 \(\rm PF_2\) 의 기울기는 \(\dfrac{3}{4}\) 이다. \(\overline{\rm PF_1}\times \overline{\rm PF_2}\) 의 값은? ① \(2\sqrt{10}\) ② \(4\sqrt{3}\) ③ \(2\sqrt{14}\) ④ \(8\..
좌표평면에서 점 \(\rm A(1,\;0)\) 과 포물선 \(y^2=4x\) 위의 한 점 \(\rm B\) 에 대하여 선분 \(\rm AB\) 와 타원 \(\dfrac{x^2}{4}+\dfrac{y^2}{3}=1\) 의 교점을 \(\rm C\) 라 하자. \(\overline{\rm AB}=5\) 일 때, 삼각형 \(\rm OAC\) 의 넓이는? (단, \(\rm O\) 는 원점이고, 점 \(\rm B\) 는 제\(1\)사분면 위의 점이다.) ① \(\dfrac{3}{26}\) ② \(\dfrac{3}{13}\) ③ \(\dfrac{9}{26}\) ④ \(\dfrac{6}{13}\) ⑤ \(\dfrac{26}{13}\) 정답
그림과 같이 \(x\) 축 위의 점 \(\rm P\) 에서 원 \(x^2+y^2=1\) 에 그은 접선의 접점을 \(\rm A\), \(y\) 축과의 교점을 \(\rm B\) 라 하고, 타원 \(4x^2+y^2=4\) 에 그은 접선의 접점을 \(\rm C\), \(y\) 축과의 교점을 \(\rm D\) 라 하자. \(\overline{\rm PA}:\overline{\rm AB}=2:1\) 일 때, 삼각형 \(\rm POD\) 의 넓이 \(S\) 에 대하여 \(10S^2\) 의 값을 구하시오. (단, \(\rm O\) 는 원점이다.) 정답 \(45\)