일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 확률
- 이차곡선
- 심화미적
- 여러 가지 수열
- 로그함수의 그래프
- 수악중독
- 수열
- 수학질문답변
- 수학2
- 이정근
- 수만휘 교과서
- 행렬과 그래프
- 중복조합
- 미적분과 통계기본
- 경우의 수
- 수학1
- 함수의 그래프와 미분
- 도형과 무한등비급수
- 적분
- 접선의 방정식
- 행렬
- 함수의 연속
- 정적분
- 기하와 벡터
- 수능저격
- 수학질문
- 수열의 극한
- 함수의 극한
- 미분
- 적분과 통계
- Today
- Total
목록수학2 (267)
수악중독
\(f(x)\) 가 다항함수일 때, 모든 실수에서 연속인 함수 \(g(x)\) 를 \[g\left( x \right) = \left\{ {\begin{array}{ll}{\dfrac{{f\left( x \right) - {x^2}}}{{x - 1}}\;\;\;\left( {x \ne 1} \right)}\\{\;\;\;\;\;\;\;\;k\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {x = 1} \right)}\end{array}} \right.\] 로 정의하자. \(\lim \limits _{x \to \infty} g(x)=2\) 일 때, \(k+f(3)\) 의 값을 구하시오. (단, \(k\) 는 상수) 정답 15
\(\left | x \right | \le n\) 일 때, \(x\) 에 대한 방정식 \(\left | x \right | = \dfrac{1}{x-[x]}\) 의 근의 개수를 나타낸 것으로 옳은 것은? (단, \(n\) 은 \(n\ge 2\) 인 정수이고 \([x]\) 는 \(x\) 를 넘지 않는 최대의 정수이다.)① \(2n\) ② \(2n-1\) ③ \(2n-2\) ④ \(2n-3\) ⑤ \(2n-4\) 정답 ④
일차함수 \(y=f(x)\) 와 이차함수 \(y=g(x)\) 의 그래프가 오른쪽 그림과 같다. 방정식 \(\dfrac{f(x)}{g(x)}+1=\dfrac{2g(x)}{f(x)}\) 의 실근의 개수는? ① \(1\) ② \(2\) ③ \(3\)④ \(4\) ⑤ \(5\) 정답 ②
\( f(x) \) 가 \( x \) 에 대한 일차식이고, \( \displaystyle \int_{0}^{1} f(x) {\rm d } x = 1 \) 을 만족할 때, \( S = \displaystyle \int_{0}^{1} \left\{ f(x) \right\}^2 {\rm d } x \) 에 대한 다음 설명 중 옳은 것은? ① \( -1 1\) ④ \(S\)는 모든 양수값을 가진다. ⑤ \(S\)는 모든 실수 값을 가진다. 정답 ③
그림과 같이 높이가 \(30 \rm cm\) 인 그릇 \(\rm A\) 에 물이 가득 채워져 있고, 그릇 \(\rm A\) 바로 아래에 밑면의 반지름의 길이가 \(20 \rm cm\) 이고 높이가 \(30 \rm cm\) 인 원기둥 모양의 그릇 \(\rm B\)가 있다. 그릇 \(\rm A\) 에 반지름의 길이가 \(10 \rm cm\)인 쇠공 \(\rm C\) 를 매초 \(1 \rm cm\) 의 속력으로 잠기도록 넣으면 그릇 \(\rm A\) 에서 넘쳐 나온 물이 모두 그릇 \(\rm B\) 에 채워진다. 쇠공이 물에 잠기기 시작하여 \(10\)초가 되는 순간 그릇 \(\rm B\) 에서 수면이 상승하는 속도는? (단, 그릇 \(\rm A\) 에 넘쳐 나온 물이 그릇 \(\rm B\) 에 떨어지는 시간..
좌표공간에서 원점을 중심으로 하고 반지름의 길이가 \(9\) 인 구가 세 점 \({\rm A}(18,\;0,\;0),\;\;{\rm B}(0,\;9,\;0),\;\; {\rm C}(0,\;0,\;9)\) 를 지나는 평면에 의하여 잘린 도형의 넓이는 \(a\pi\) 이다. 이때, \(a\) 의 값을 구하시오. 정답 45
한 변의 길이가 \(2\) 인 정사각형 \(\rm ABCD\) 의 각 변의 중점을 각각 \(\rm E,\; F,\; G,\; H\) 라고 하자. 그림과 같이 합동인 \(4\) 개의 포물선으로 둘러싸인 어두운 부분의 넓이가 \(\dfrac{b\sqrt{2}}{a}- \dfrac{d}{c}\) 일 때, \(a+b+c+d\) 의 값을 구하시오. (단, \(a\) 와 \(b\), \(c\) 와 \(d\) 는 각각 서로소인 자연수이다.) 정답 21
모든 실수 \(a\) 에 대하여 직선 \(x+2ay=a^2 +1\) 이 지나지 않는 영역을 \(A\) 라 하자. 영역 \(A\) 중에서 \(x \ge 0\) 인 부분을 \(y\) 축의 둘레로 회전하여 생긴 회전체의 부피는? ① \(\dfrac{3}{4}\pi\) ② \(\pi\) ③ \(\dfrac{16}{15}\pi\) ④ \(\dfrac{6}{5}\pi\) ⑤ \(\dfrac{4}{3}\pi\) 정답 ③
두 다항식 \(f(x),\;g(x)\) 에 대하여 분수부등식 \(\dfrac{1}{f(x)}+\dfrac{1}{g(x)}=1\) 을 풀어 무연근 \(\alpha\) 와 무연근이 아닌 근 \(\beta\) 를 얻었다. 에서 옳은 것을 모두 고른 것은? ㄱ. \(f(\beta)+g(\beta) =0\) 이다. ㄴ. \(f(\beta) \ne 1,\; g(\beta) \ne 1\) 이다. ㄷ. \(x- \alpha\) 는 두 다항식 \(f(x),\; g(x)\) 의 공약수이다. ① ㄱ ② ㄴ ③ ㄷ ④ ㄱ, ㄷ ⑤ ㄴ, ㄷ 정답 ⑤
좌표평면 위에 오른쪽 그림과 같이 벡터 \(\overrightarrow{a_0},\;\;\overrightarrow{a_1},\;\;\cdots,\;\;\overrightarrow{a_6}\) 이 평면 위에 주어져 있다. \(\left | \overrightarrow{a_i} \right | = s_i \;\; (i=0,\;1,\; \cdots ,\; 6)\) 라 할 때, 다음 중 옳은 것은? ① \(s_0 - s_1 +s_3 -s_4 + s_6 =0\) ② \(s_0 +s_1 -s_3 -s_4 +s_6 =0\) ③ \(s_0 +s_1 +s_3 -s_4 -s_6 =0\) ④ \(s_0 - s_1 -s_3 -s_4 +s_6 =0\) ⑤ \(s_0 -s_1 -s_3 +s_4 +s_6 =0\) 정답 ②