일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 |
- 경우의 수
- 로그함수의 그래프
- 심화미적
- 여러 가지 수열
- 접선의 방정식
- 행렬과 그래프
- 적분
- 수학2
- 행렬
- 미분
- 도형과 무한등비급수
- 수능저격
- 수학질문
- 함수의 극한
- 수악중독
- 수학질문답변
- 이정근
- 수열
- 이차곡선
- 기하와 벡터
- 확률
- 미적분과 통계기본
- 함수의 연속
- 적분과 통계
- 중복조합
- 수만휘 교과서
- 함수의 그래프와 미분
- 수열의 극한
- 정적분
- 수학1
- Today
- 727
- Total
- 3,850,907
목록수열 (53)
수악중독
1. 수열의 뜻 2. 등차수열 - 일반항 및 등차중항 3. 등차수열의 합 4. 등비수열의 일반항 & 등비중항 5. 등비수열의 합 6. 합의 기호 $\left ( \sum \right )$의 뜻과 성질 7. 자연수 거듭제곱의 합 8. 분수로 표시된 수열의 합 9. 수열의 합과 일반항과의 관계 10. (보너스) 등차수열, 등비수열의 합과 일반항과의 관계 11. (보너스) 군수열 12. 수열의 귀납적 정의 13. (보너스) 귀납적 정의로부터 일반항 구하기 14. 수학적 귀납법 이전
$1$ 부터 $10$ 까지의 자연수를 일렬로 배열할 때, 다음 두 가지 조건을 만족하는 방법의 수를 구하여라. (가) $1 \le i \le 9$ 일 때, ($i$ 번째의 수) $\ge i$ (나) ($10$ 번째의 수) $\le 10$ 정답 $512$
모든 항이 양수인 수열 \(\{a_n\}\) 은 \(a_1 = \dfrac{1}{4}\) 이고 \[ (n+1)a_n=a_{n+1}(3n-2a_n) \; ( n \ge 1)\] 을 만족시킨다. 다음은 일반항 \(a_n\) 을 구하는 과정이다. 주어진 식의 양변을 \(a_n a_{n+1}\) 로 나누면 \(\dfrac{n+1}{a_{n+1}}=\dfrac{3n-2a_n}{a_n}\)이다. \(b_n=\dfrac{n}{a_n}\) 이라 하면 \(b_{n+1}=3b_n + (가) \)이고, \(b_{n+1}-1=3(b_n-1)\) 이다.\(b_1=4\) 이므로 \(b_n= (나)\) \(b_n = (나) +1\)이다. 그러므로 \(a_n=\dfrac{n}{(나)+1} \; (n\ge 1)\)이다. 위의 (가)에..
다음 조건을 만족시키는 모든 수열 \(\{a_n\}\) 에 대하여 \(m\) 의 최댓값은? (단, \(m\) 은 자연수이다.) (가) \(a_{1}=100\) (나) 모든 자연수 \(n\) 에 대하여 \(a_n-a_{n+1}=m\) (다) \(k \leq m\) 인 모든 자연수 \(k\) 에 대하여 \(\sum \limits_{n=1}^{k}a_n>0\) 이다. ① \(14\) ② \(15\) ③ \(16\) ④ \(17\) ⑤ \(18\) 정답 ①
\(a_1=2,\; a_{n+1}=10a_n+81\;(n=1,\;2,\;3,\;\cdots)\) 로 정의된 수열 \(\{a_n\}\) 이 있다. 이때, \(a_{10}\) 의 각 자리의 수의 합은? ① \(68\) ② \(70\) ③ \(72\) ④ \(74\) ⑤ \(76\) 정답 ④
첫째항이 \(1\) 인 수열 \(\{a_n\}\) 에 대하여 \(S_n=\sum \limits_{k=1}^{n}a_k\) 라 할 때, \[nS_{n+1} =(n+2)S_n +(n+1)^3 \;\; (n \geq 1)\] 이 성립한다. 다음은 수열 \(\{a_n\}\) 의 일반항을 구하는 과정의 일부이다. 자연수 \(n\) 에 대하여 \(S_{n+1}=S_n +a_{n+1}\) 이므로 \[n a_{n+1} = 2S_n +(n+1)^3 \cdots\cdots ㉠\] 이다. \(2\) 이상의 자연수 \(n\) 에 대하여 \[(n-1)a_n=2S_{n-1}+n^3 \cdots\cdots ㉡\]이고, ㉠에서 ㉡을 뺀 식으로부터 \[na_{n+1}=(n+1)a_n + (가) \] 를 얻는다. 양변을 \(n(n+1)..
수열 \(\{a_n\}\) 은 \(a_1=2\) 이고, \(S_n=\sum \limits_{k=1}^{n} a_k\) 라 할 때, \[a_{n+1}= \dfrac{S_n}{a_n}\;\; (n \geq 1) \] 을 만족시킨다. 다음은 \(S_n\) 을 구하는 과정이다. 주어진 식으로부터 \(a_2=\dfrac{S_1}{a_1}=1\) 이다. \(n\geq 3\) 일 때, \(a_n = \dfrac{S_{n-1}}{a_{n-1}}=\dfrac{S_{n-2}+a_{n-1}}{a_{n-1}}=\dfrac{a_{n-2}a_{n-1}+a_{n-1}}{a_{n-1}}\) 이므로 \(a_n =a_{n-2}+1\) 이다. 따라서 일반항 \(a_n\) 을 구하면, 자연수 \(k\) 에 대하여 \(n=2k-1\) 일 때..
수열 \(\{a_n\}\) 은 \(a_1=4\) 이고, \[a_{n+1} = n \cdot 2^n +\sum \limits_{k=1}^{n} \dfrac{a_k}{k} \; (n \geq 1)\]을 만족시킨다. 다음은 일반항 \(a_n\) 을 구하는 과정이다. 주어진 식에 의하여 \[a_n =(n-1) \cdot 2^{n-1} + \sum \limits_{k=1}^{n-1} \dfrac{a_k}{k} \;(n \geq 2)\] 이다. 따라서 \(2\) 이상의 자연수 \(n\) 에 대하여 \(a_{n+1}-a_n=(가)+\dfrac{a_n}{n} \) 이므로 \(a_{n+1}= \dfrac{(n+1)a_n}{n}+(가)\) 이다. \(b_n=\dfrac{a_n}{n}\) 이라 하면 \(b_{n+1}=b_n..
좌표평면 위의 원점 \(\rm O\) 와 점 \({\rm P_1}(1,\;0)\) 이 있다. 모든 자연수 \(n\) 에 대하여 점 \({\rm P}_n (x_n ,\; y_n)\) 은 다음 조건을 만족시킨다. (가) 동경 \({\rm OP}_n\) 이 나타내는 각의 크기는 \(\dfrac{n-1}{3}\pi\) 이다. (나) \[\overline {{\rm{O}}{{\rm{P}}_{n + 1}}} = \left\{ {\begin{array}{ll} {\dfrac{1}{2}\overline {{\rm{O}}{{\rm{P}}_n}} }&{\left( {{y_n} > 0} \right)}\\[12pt] {\overline {{\rm{O}}{{\rm{P}}_n}} }&{\left( {{y_n} = 0} \rig..
그림과 같은 수도관은 물을 흘려보내면 유실되는 물이 없이 왼쪽으로 \(a%\), 오른쪽으로 \(b%\) 가 흐른다. 일정한 양의 물을 흘려보낸 후 물통 \(A, \;B,\;C,\;D,\;D\) 의 물의 양을 측정하면 물통 \(B, \;C,\;D\) 순으로 등비수열을 이룬다. \(b=p\sqrt{5}-q\) (\(p,\;q\) 는 유리수) 일 때, \(p+q\) 의 값을 구하시오. (단, \(ab \ne 0\)) 정답 \(100\)