일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 경우의 수
- 중복조합
- 적분과 통계
- 수악중독
- 기하와 벡터
- 수학질문답변
- 로그함수의 그래프
- 수학2
- 미분
- 이차곡선
- 함수의 연속
- 수능저격
- 행렬
- 심화미적
- 미적분과 통계기본
- 접선의 방정식
- 함수의 그래프와 미분
- 수열
- 이정근
- 수열의 극한
- 수학질문
- 정적분
- 여러 가지 수열
- 수학1
- 행렬과 그래프
- 도형과 무한등비급수
- 수만휘 교과서
- 함수의 극한
- 확률
- 적분
- Today
- Total
목록미분 (117)
수악중독
함수 \(f(x)\) 에 대하여 옳은 것만을 에서 있는 대로 고른 것은?ㄱ. 함수 \(f(x)\) 가 \(x=c\) 에서 미분가능하면 \(x=c\) 에서 연속이다. (단, \(c\) 는 실수)ㄴ. 극한값 \(\lim \limits_{h \to 0} \dfrac{f(a+h)-f(a-h)}{2h}\) 가 존재하면 함수 \(f(x)\) 는 \(x=a\) 에서 미분가능하다. (단, \(a\) 는 실수)ㄷ. 극한값 \(\lim \limits_{h \to 0} \dfrac{f \left ( 1+h^2 \right ) -f(1)}{h^2}\) 이 존재하면 함수 \(f(x)\) 는 \(x=1\) 에서 미분가능하다. ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ①
함수 \(f(x)\) 에 대하여 \(f'(x)=(x-1)^3\) 이다 함수 \(f(x)\) 의 극값을 \(M\), 함수 \(y=f(x)\) 의 그래프 위의 두 점 \({\rm A}(0,\; f(0)), \; {\rm B}(2, \; f(2))\) 에서 접하는 두 접선의 교점의 \(y\) 좌표를 \(N\) 이라 할 때, \(16(M-N)\) 의 값을 구하시오. 정답 12
이차함수 \(y=f(x)\) 의 그래프 위의 한 점 \((a,\; f(a))\) 에서의 접선의 방정식을 \(y=g(x)\) 라 하자. \(h(x)=f(x)-g(x)\) 라 할 때, 에서 옳은 것을 모두 고른 것은? ㄱ. \(h(x_1 )=h(x_2 ) \) 를 만족시키는 서로 다른 두 실수 \(x_1 ,\; x_2\) 가 존재한다. ㄴ. \(h(x)\) 는 \(x=a\) 에서 극소이다. ㄷ. 부등식 \(\left | h(x) \right | < \dfrac{1}{100}\) 의 해는 항상 존재한다. ① ㄱ ② ㄴ ③ ㄷ ④ ㄱ, ㄴ ⑤ ㄱ, ㄷ 정답 ⑤
최고차항의 계수가 \(1\) 이고, \(f(0)=3,\; f'(3)
두 함수 \(f(x)=5x^3 - 10x^2 +k,\;\; g(x)=5x^2 +2\) 가 있다. \(\{ x \;\vert \; 0
삼차함수 \(y=f(x)\) 와 이차함수 \(y=g(x)\) 의 도함수 \(y=f~'(x)\) 와 \(y=g'(x)\) 의 그래프가 그림과 같다. \( f(0)=g(0),\;\;f(a)-g(a)0\) ㄴ. 방정식 \(f(x)=g(x)\) 는 서로 다른 세 실근을 갖는다. ㄷ. 구간 \([a, \;b]\) 에서 함수 \(f(x)-g(x)\) 는 \(x=b\) 일 때 최댓값을 갖는다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄴ, ㄷ 정답 ⑤
오른쪽 그림과 같이 길이가 \(10\)인 선분 \(\rm AB\) 위에 동점 \(\rm P\)가 있을 때, 선분 \(\rm AP,\;BP\)를 지름으로 하는 두 원의 넓이의 합을 \(S\)라 하자. 점 \(\rm P\)가 점 \(\rm A\)에서 출발하여 점 \(\rm B\)를 향해 매초 \(1\)의 속도로 움직이면 출발한 후 \(6\)초일 때, \(S\)의 순간변화율은? ① \(2\pi\) ② \(\pi\) ③ \(\dfrac{\pi}{2}\) ④ \(-\pi\) ⑤ \(-2\pi\) 정답 ②
둘레의 길이가 \(200\rm m\)인 육상 트랙을 따라 갑, 을 두 사람이 같은 지점에서 출발하여 서로 같은 방향으로 달려가고 있다. 출발한 후 \(t\)분 동안 갑, 을이 움직인 거리가 각각 \(t^3 +t \;(\rm m)\), \({\dfrac{3}{2}}t^2 +7t\;(\rm m)\)일 때, 출발한 후 \(10\)분 동안 두 사람이 만나는 횟수를 구하시오. 정답 4번
함수 \(y=x^3 +ax\)의 그래프를 원점을 중심으로 양의 방향으로 \(45^o\) 회전시켜 얻은 곡선이 실수 전체에서 정의된 어떤 함수 \(y=f(x)\)의 그래프가 되는 실수 \(a\)의 값의 범위는? ① \(a\ge 1\) ② \(a\ge 0 \) ③ \(a\le 1\) ④ \(a\le -1\) ⑤ \(0\le a \le 2 \) 정답 ①
다음 그림과 같이 물체 \(\rm P\) 는 원점 \(\rm O\) 에서 \(100 \rm m\) 떨어진 지점 \(\rm A\) 를 항하여 움직이고, 물체 \(\rm Q\) 는 \(\rm A\) 에서 원점 \(\rm O\) 를 향하여 움직이고 있다. \(t\) 초 후의 두 물체 \(\rm P, \;Q\) 의 위치 \(f(t),\;g(t)\) 는 각각 \(f(t)=at,\; g(t)=t^3 -6t^2 +100\) 이다. 물체 \(\rm Q\) 가 움직이는 동안 물체 \(\rm P\) 와 한 번만 만난다고 할 때, 상수 \(a\) 의 값을 구하시오. 정답 15