일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 심화미적
- 이정근
- 미적분과 통계기본
- 기하와 벡터
- 행렬
- 적분과 통계
- 도형과 무한등비급수
- 중복조합
- 정적분
- 여러 가지 수열
- 함수의 그래프와 미분
- 접선의 방정식
- 행렬과 그래프
- 함수의 극한
- 수학질문
- 수능저격
- 이차곡선
- 경우의 수
- 미분
- 함수의 연속
- 로그함수의 그래프
- 수악중독
- 수학질문답변
- 수열의 극한
- 확률
- 수열
- 수만휘 교과서
- 수학1
- 적분
- 수학2
- Today
- Total
목록이정근 (1077)
수악중독
함수 \(f(x)\) 가 다음 조건을 만족시킨다. (가) \(-1 \leq x < 1\) 에서 \(f(x)=|2x|\) 이다. (나) 모든 실수 \(x\) 에 대하여 \(f(x+2)=f(x)\) 이다. 자연수 \(n\) 에 대하여 함수 \(y=f(x)\) 의 그래프와 함수 \(y=\log_{2n} x\) 의 그래프가 만나는 점의 개수를 \(a_n\) 이라 하자. \(\sum \limits_{n=1}^{7} a_n\) 의 값을 구하시오. 정답 \(553\)
\(x\) 에 대한 부등식 \[\left ( 3^{x+2}-1 \right ) \left ( 3^{x-p}-1 \right ) \leq 0\] 을 만족시키는 정수 \(x\) 의 개수가 \(20\) 일 때, 자연수 \(p\) 의 값을 구하시오. 정답 \(17\)
그림과 같이 한 변의 길이가 \(3\) 인 정사각형 \(\rm A_1B_1C_1D_1\) 이 있다. 네 선분 \(\rm A_1B_1\), \( \rm B_1C_1\), \(\rm C_1D_1\), \( \rm D_1A_1\) 을 각각 \(1:2\)로 내분하는 점을 각각 \(\rm E_1,\; F_1,\;G_1,\;H_1\) 이라 하고, 정사각형 \(\rm A_1B_1C_1D_1\) 의 네 꼭짓점을 중심으로 하고 네 선분 \(\rm A_1E_1\), \(\rm B_1F_1, \; C_1G_1, \;D_1H_1\) 을 각각 반지름으로 하는 \(4\) 개의 사분원을 잘라내어 얻은 모양의 도형을 \(R_1\) 이라 하자. 정사각형 \(\rm E_1F_1G_1H_1\) 과 도형 \(R_1\) 과의 교점 중 정사각..
그림과 같이 좌표평면 위에 네 점 \(\rm A(1,\;0), \; B(3, \;0),\;C(3, \;2),\;D(1,\;2)\) 를 꼭짓점으로 하는 정사각형 \(\rm ABCD\)가 있다. 한 변의 길이가 \(2\) 인 정사각형 \(\rm EFGH\) 의 두 대각선의 교점이 원 \(x^2+y^2=1\) 위에 있을 때, 두 정사각형의 내부의 공통부분의 넓이의 최댓값은? (단, 정사각형의 모든 변은 \(x\) 축 또는 \(y\) 축에 수직이다.) ① \(\dfrac{2+\sqrt{3}}{4}\) ② \(\dfrac{1+\sqrt{2}}{2}\) ③ \(\dfrac{2+\sqrt{2}}{2}\) ④ \(\dfrac{3\sqrt{3}}{4}\) ⑤ \(\dfrac{5\sqrt{2}}{4}\) 정답 ④
좌표평면 위에 두 점 \(\rm A(-2,\;0),\; B(-2,\;2\sqrt{3})\) 이 있다. 두 행렬 \(\left ( \matrix{-1 & 0 \\ 0 & 1} \right ),\; \dfrac{1}{2} \left ( \matrix{1 & -\sqrt{3} \\ \sqrt{3} & 1} \right )\) 로 나타내어지는 일차변환을 각각 \(f, \;g\) 라 하고, 두 점 \(\rm A, \;B\) 가 합성변화 \(g \circ f\) 에 의하여 옮겨진 점을 각각 \(\rm A',\;B'\) 이라 하자. 선분 \(\rm A'B'\) 이 \(y\) 축과 만나는 점을 \(\rm C\) 라 할 때, 삼각형 \(\rm OA'B'\) 의 넓이는 삼각형 \(\rm OA'C\) 의 넓이의 \(k\) ..
양수 \(x\) 에 대하여 \(\log x\) 의 지표와 가수를 각각 \(f(x),\;g(x)\) 라 할 때, 두 양수 \(a, \;b\) 가 다음 조건을 만족시킨다. (가) \(10 \leq a
그림과 같이 곡선 \(y=-x^2+1\) 위에 세 점 \(\rm A(-1,\;0),\; \rm B(1,\;0),\; \rm C(0,\;1)\) 이 있다. \(2\) 이상의 자연수 \(n\) 에 대하여 선분 \(\rm OC\) 를 \(n\) 등분할 때, 양 끝점을 포함한 각 분점을 차례로 \(\rm O= D_0,\; D_1,\; D_2,\; \cdots,\; D_{{\it n}-1},\; \rm D_{\it n} = \rm C\) 라 하자. 직선 \(\rm AD_{\it k}\) 가 곡선과 만나는 점 중 \(\rm A\) 가 아닌 점을 \({\rm P}_k\) 라 하고, 점 \(\rm P_{\it k}\) 에서 \(x\) 축에 내린 수선의 발을 \({\rm Q}_k\) 라 하자. \((k=1,\;2,\;\..
그림과 같이 중심이 \(\rm O\) 이고, 반지름의 길이가 \(1\) 인 원이 있다. 원의 중심으로부터 거리가 \(2\) 인 점 \(\rm A\) 에서 원과 서로 다른 두 점에서 각각 만나도록 그은 두 직선이 이루는 각의 크기가 \(\dfrac{\pi}{6}\) 로 일정하다. 원의 중심 \(\rm O\) 에서 두 직선까지의 거리를 각각 \(l,\;m\) 이라 할 때, \(2l^2+m^2\) 의 최솟값은 \(p+q\sqrt{7}\) 이다. \(30(p+q)\) 의 값을 구하시오. (단, \(p, \;q\) 는 유리수이다.) 정답 \(120\)
함수 \(f(x)=\dfrac{\ln x^2}{x}\) 의 극댓값을 \(\alpha\) 라 하자. 함수 \(f(x)\) 와 자연수 \(n\) 에 대하여 \(x\) 에 대한 방정식 \(f(x)-\dfrac{\alpha}{n}x=0\) 의 서로 다른 실근의 개수를 \(a_n\) 이라 할 때, \(\sum \limits_{n=1}^{10}a_n\) 의 값을 구하시오. 정답 \(34\)