일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 접선의 방정식
- 수학질문
- 이차곡선
- 수만휘 교과서
- 수능저격
- 미적분과 통계기본
- 이정근
- 미분
- 수열
- 수학질문답변
- 기하와 벡터
- 적분
- 수악중독
- 로그함수의 그래프
- 여러 가지 수열
- 중복조합
- 도형과 무한등비급수
- 정적분
- 심화미적
- 경우의 수
- 수열의 극한
- 수학2
- 행렬
- 함수의 극한
- 적분과 통계
- 수학1
- 함수의 연속
- 함수의 그래프와 미분
- 행렬과 그래프
- 확률
- Today
- Total
목록수학2 (267)
수악중독
정답 ⑤
정답 ④
정답 ①
사차함수 \(f(x)=x^4 +ax^3 +bx^2 -b \;\;(b
두 방정식 \(\sqrt {1 - {x^2}} = x + m,\;\;\;1 - {x^2} = {\left( {x + m} \right)^2}\)의 해집합이 서로 같도록 하는 상수 \(m\)의 값의 범위가 \( \alpha \le m \le \beta \)일 때, 두 상수 \( \alpha,\;\beta\)의 곱 \(\alpha\beta\)의 값은? (단, 방정식의 해집합은 공집합이 아니다.) ① \(-\sqrt{2}\) ② \(-1\) ③ \(1\) ④ \(\sqrt{2}\) ⑤ \(2\) 정답 : ④
아래 [그림1]은 옆면이 윗면과 밑면에 수직이고 속이 비어 있는 원기동을 밑면에 평행하지 않은 비스듬한 평면 \(\alpha\) 로 자른 상태를 나타낸 것이다. 이때, 평면 \(\alpha\) 와 원기둥의 옆면이 만나는 교선 \(e\) 의 모양은 타원이 된다. 이제 [그림2]와 같이 원기둥의 반지름과 반지름이 같은 반구 \(2\) 개를 원기둥의 위와 아래에서 반구의 평평한 면이 원기둥의 밑면에 평행인 상태가 유지되도록 하면서 두 반구가 각각 평면 \(\alpha\) 에 접할 때까지 밀어 넣는다. [그림2]에서 점 \(\rm P,\;Q\) 는 각각 교선 \(e\) 상의 점 중에서 가장 아래에 있는 점과 가장 위에 있는 점을 나타내고, 사각형 \(\rm ABCD\) 는 점 \(\rm P\) 와 \(\rm Q..
[수학/수능수학] - 쌍곡선의 접선과 점근선에 관한 성질 [수학/수능수학] - 쌍곡선의 접선과 점근선 [수학/수능수학] - 쌍곡선 점근선까지의 거리의 곱은 일정 [수학/수능수학] - 쌍곡선 접선의 개수 [수학/수능수학] - 쌍곡선의 반사 성질 [수학/수능수학] - 직교하는 두 접선의 교점의 자취 (쌍곡선)
\(\angle \rm AOB = \theta\) 라고 하면 \(\sin \theta = \dfrac{2ab}{a^2 +b^2}\) 로부터 \(\triangle {\rm ABC} = \dfrac{1}{2} \times \dfrac{ab \sqrt{a^2 +b^2}}{|bx_1 - ay_1|} \times \dfrac{ab \sqrt{a^2 +b^2}}{|bx_1 + ay_1|} \times \dfrac{2ab}{a^2 +b^2} = \dfrac{a^3 b^3}{\left | a^2 b^2 \right |} = |ab|\) 로 일정 [수학/수능수학] - 쌍곡선의 접선과 점근선 [수학/수능수학] - 쌍곡선 점근선까지의 거리의 곱은 일정 [수학/수능수학] - 쌍곡선 접선의 개수 [수학/수능수학] - 쌍곡선의 ..
보충설명) \(\overline{\rm AB}=\left | x_2 - x_1 \right | \sqrt{1+m^2}\) 이 되는 이유를 묻는 분들이 계셔서 올려 드립니다. [수학/수능수학] - 직교하는 두 접선의 교점의 자취 (타원) [수학/수능수학] - 타원의 반사 성질 [수학/수능수학] - 원과 타원의 접선과 접점 [수학/수능수학] - 타원의 두 초점과 접선 사이의 거리 [수학/수능수학] - 원과 타원의 관계 [수학/수능수학] - 타원의 매개 변수 방정식 [수학/수능수학] - 이차곡선의 극선의 방정식