일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 미분
- 로그함수의 그래프
- 수능저격
- 정적분
- 수만휘 교과서
- 수학1
- 기하와 벡터
- 수학2
- 수악중독
- 접선의 방정식
- 함수의 연속
- 여러 가지 수열
- 경우의 수
- 함수의 그래프와 미분
- 이정근
- 함수의 극한
- 수학질문답변
- 행렬
- 심화미적
- 미적분과 통계기본
- 중복조합
- 적분과 통계
- 수학질문
- 확률
- 수열의 극한
- 이차곡선
- 행렬과 그래프
- 수열
- 도형과 무한등비급수
- 적분
- Today
- Total
목록수학2 (267)
수악중독
\(y=2 \cos ^2 x+(\sin x + \cos x)^2 + \sin 2x \cos 2x\) 의 최솟값은? (단, \(0 \leq x \leq \pi\)) ① \(1\) ② \(2\) ③ \(3\) ④ \(4\) ⑤ \(6\) 정답 ①
두 이차정사각행렬 \(A, \; B\) 가 \[AB+A^2B=E,\;\;\; (A-E)^2+B^2=O\] 를 만족시킬 때, 에서 옳은 것만을 있는 대로 고른 것은? (단, \(E\) 는 단위행렬이고, \(O\) 는 영행렬이다.) ㄱ. \(B\) 의 역행렬이 존재한다. ㄴ. \(AB=BA\) ㄷ. \(\left ( A^3 -A \right )^2 +E=O\) ① ㄴ ② ㄷ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
그림과 같이 길이가 \(4\) 인 선분 \(\rm AB\) 를 한 변으로 하고, \(\overline{\rm AC}=\overline{\rm BC}, \; \angle \rm ACB=\theta\) 인 이등변 삼각형 \(\rm ABC\) 가 있다. 선분 \(\rm AB\) 의 연장선 위에 \(\overline{\rm AC}=\overline{\rm AD}\) 인 점 \(\rm D\) 를 잡고, \(\overline{\rm AC}=\overline{\rm AP}\) 이고 \(\angle \rm PAB = 2 \theta\) 인 점 \(\rm P\) 를 잡는다. 삼각형 \(\rm BDP\) 의 넓이를 \(S(\theta)\) 라 할 때, \(\lim \limits_{\theta \to +0} \left ( ..
이차함수 \(f(x)\) 에 대하여 함수 \(g(x)=f(x)e^{-x}\) 이 다음 조건을 만족시킨다. (가) 점 \(\left ( 1,\; g(1) \right )\) 과 점 \( \left ( 4,\; g(4) \right )\) 는 곡선 \(y=g(x)\) 의 변곡점이다. (나) 점 \((0, \;k)\) 에서 곡선 \(y=g(x)\) 에 그은 접선의 개수가 \(3\) 인 \(k\) 의 값의 범위는 \(-1
이차함수 \(f(x)=x^2 -ax\) 와 실수 \(t\) 에 대하여 좌표평면에서 중심이 \(\left ( t,\; f(t) \right )\) 이고 반지름의 길이가 \(r\) 인 원이 있다. 이 원 위의 점 \(\rm Q\) 에 대하여 선분 \(\rm OQ\) 의 길이의 최솟값을 \(g(t)\) 라 하자. \(g(t)\)가 두 점에서만 미분가능하지 않을 때, \(a^2 + 4r^2\) 의 값을 구하시오. (단, \(a\) 와 \(r\) 은 양의 상수이고, \(\rm O\) 는 원점이다.) 정답 \(35\)
함수 \(f(x)=kx^2 e^{-x} \;\;(k>0)\) 과 실수 \(t\) 에 대하여 곡선 \(y=f(x)\) 위의 점 \( \left ( t,\; f(t) \right )\) 에서 \(x\) 축까지의 거리와 \(y\) 축까지의 거리 중 커지 않은 값을 \(g(t)\) 라 하자. 함수 \(g(t)\) 가 한 점에서만 미분가능하지 않도록 하는 \(k\) 의 최댓값은? ① \(\dfrac{1}{e}\) ② \(\dfrac{1}{\sqrt{e}}\) ③ \(\dfrac{e}{2}\) ④ \(\sqrt{e}\) ⑤ \(e\) 정답 ⑤
반지름의 길이가 \(1\) 이고, 중심각의 크기가 \(\dfrac{\pi}{3}\) 인 부채꼴 \(\rm OAB\) 가 있다. 그림과 같이 선분 \(\rm OA\) 위의 점 \(\rm S\), 선분 \(\rm OB\) 위의 점 \(\rm R\) 와 호 \(\rm AB\) 위의 두 점 \(\rm P, \; Q\) 에 대하여 사각형 \(\rm PQRS\) 가 직사각형을 이룬다고 한다. \(\angle \rm AOP = \theta\) 라 할 때, 직사각형 \(\rm PQRS\) 의 넓이를 \(T(\theta)\) 라 하자. \(\lim \limits_{\theta \to +0} \dfrac{T(\theta)}{\theta}\) 의 값을 구하시오. 정답 \(2\)
이차함수 \(f(x)=1-x^2\) 과 함수 \(g(x)=|x-1|\) 에 대하여 방정식 \[\dfrac{\left \{ f(x) - \sqrt{g(x)} \right \} \left \{f(x) +g(x) \right \} }{f(x)-g(x)} =0\] 의 실근의 개수는? ① \(1\) ② \(2\) ③ \(3\) ④ \(4\) ⑤ \(5\) 정답 ②
함수 \(f(x)=\dfrac{1}{x} -2\) 와 집합 \(A= \left \{ x \; | \; f(x) - \dfrac{a+1}{x-1} =0 ,\; x>0 \right \}\) 에 대하여 \(n(A)=1\) 이 되도록 하는 모든 실수 \(a\) 의 값의 합은? (단, \(n(A)\) 는 집합 \(A\) 의 원소의 개수이다.) ① \(-1-2\sqrt{2}\) ② \(1-2\sqrt{2}\) ③ \(2-2\sqrt{2}\) ④ \(1+2\sqrt{2}\) ⑤ \(2+2\sqrt{2}\) 정답 ②
최고차항의 계수가 \(1\) 인 삼차함수 \(f(x)\) 에 대하여 모든 실수에서 연속인 함수 \(g(x)\) 를 \[g\left( x \right) = \left\{ {\begin{array}{cl} {\dfrac{{f\left( x \right) - 1}}{{x - 1}}}&{\left( {x \ne 1} \right)}\\a&{\left( {x = 1} \right)} \end{array}} \right.\] 로 정의하자. \(g(3)=g(1)\) 이고 \(g(x)\) 의 최솟값이 \(3\) 일 때, \(f(a)\) 의 값을 구하시오. 정답 \(22\)