일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수열
- 수학질문답변
- 미적분과 통계기본
- 심화미적
- 함수의 극한
- 수만휘 교과서
- 경우의 수
- 수학2
- 함수의 그래프와 미분
- 중복조합
- 수열의 극한
- 이정근
- 수능저격
- 확률
- 정적분
- 기하와 벡터
- 이차곡선
- 접선의 방정식
- 로그함수의 그래프
- 함수의 연속
- 행렬
- 수악중독
- 적분
- 적분과 통계
- 미분
- 여러 가지 수열
- 행렬과 그래프
- 수학질문
- 수학1
- 도형과 무한등비급수
- Today
- Total
목록수악중독 (2132)
수악중독
좌표평면 위를 움직이는 점 ${\rm P}(x, \;y)$ 의 시각 $ t$ 에서의 위치가 $$x=\dfrac{4}{3}e^{\frac{3}{2}t}, \;\; y=\dfrac{1}{2}e^{2t}-e^t$$ 일 때, $t=1$ 에서 $t=2$ 까지 점 $\rm P$ 가 움직인 거리를 구하여라. 정답 $\dfrac{1}{2}e^4+\dfrac{1}{2}e^2-e$
좌표평면의 $ x$ 축, $y$ 축 위를 움직이는 두 점 $ \rm A, \; B$ 에 대하여서 시각 $ t\;(t>0)$ 에서의 위치가 ${\rm A} \left ( \dfrac{1}{3} t^3+4t, \; 0 \right ), \;\; {\rm B} \left ( 0, \; \sqrt{13} \right ) $ 이고 $\overrightarrow{\rm OP} = \overrightarrow{\rm OA} + \overrightarrow{\rm OB}$ 라 하자. 점 $\rm P$ 의 속력이 $7$ 일 때, 가속도의 크기는? ① $2$ ② $2\sqrt{2}$ ③ $3$ ④ $4$ ⑤ $3\sqrt{2}$ 정답 ②
좌표평면 위를 움직이는 점 $\rm P$ 의 시각 $t$ 에서의 위치 $(x, \;y)$ 가 $x=4t, \; y=(t+1)^2-2 \ln (t+1)$ 일 때, $t=0$ 에서 $t=3$ 까지 점 $\rm P$ 가 움직인 거리는 $a+b \ln 2$ 이다. 이때, 정수 $a, \;b$ 에 대하여 $a+b$ 의 값을 구하여라. 정답 $19$
좌표평면 위를 움직이는 점 $\rm P$ 의 시각 $ t$ 에서의 위치 $(x, \; y)$ 가 $ x=2t, \; y=t^2-2t+4$ 일 때, 점 $ \rm P$ 의 시각 $t=2$ 에서의 속력은? ① $\sqrt{5}$ ② $ 2\sqrt{2}$ ③ $\sqrt{10}$ ④ $ 2\sqrt{3}$ ⑤ $\sqrt{15}$ 정답 ② $\dfrac{dx}{dt}=2, \;\; \dfrac{dy}{dt}=2t-2$ 이므로 속력 $ \left | \overrightarrow{v} \right | = \sqrt{\left ( \dfrac{dx}{dt} \right )^2 + \left ( \dfrac{dy}{dt} \right) ^2 } = \sqrt{2^2 +(2t-2)^2}$따라서 $t=2$ 에서의 속력..
좌표평면 위에 세 점 $\rm A, \;B, \; D$ 가 있다. 두 선분 $\rm AD, \; BC$ 가 평행하도록 점 $\rm C$ 를 잡을 때, $$ \overrightarrow{\rm AB}=(1, \;-3), \;\; \overrightarrow{\rm BC}=(x, \; y), \;\; \overrightarrow{\rm CD}=(-4, \;1) $$ 이다. $\overrightarrow{\rm BC}=\overrightarrow{\rm OP} $ 를 만족시키는 점 $\rm P$ 에 대하여 $6 \le x \le 12$ 일 때, 점 $\rm P$ 가 나타내는 도형의 길이는? (단, $\rm O$ 는 원점이고, $xy \ne 0$ 이다.) ① $2\sqrt{10}$ ② $2 \sqrt{11}$ ..
삼각형 $\rm ABC$ 의 내부의 한 점 $\rm P$ 에 대하여 $$2 \overrightarrow{\rm AP} + \overrightarrow{\rm BP} + 3 \overrightarrow{\rm CP} = \overrightarrow{0}$$ 가 성립하고, 세 선분 $\rm AP, \; BP, \; CP$ 의 연장선이 각각 세 변 $\rm BC, \; CA, \; AB$ 와 만나는 점을 각각 $ \rm D, \; E,\; F$ 라고 할 때, 옳은 것만을 에서 있는 대로 고른 것은? ㄱ. $\rm AF:FB=1:2$ㄴ. $2 \overrightarrow{\rm BP} = \overrightarrow{\rm BC} + \overrightarrow{\rm BF}$ㄷ. 삼각형 $ \rm APE$ 의..
그림과 같이 $\overline{\rm AB}=3, \; \overline{\rm BC}=8, \; \overline{\rm CA}=9 $ 인 삼각형 $\rm ABC$ 의 내접원의 중심을 $\rm P$ 라고 하자. $\overrightarrow{\rm AP} = m \overrightarrow{\rm AB} + n \overrightarrow{\rm AC}$ 를 만족시키는 두 실수 $m, \; n$ 에 대하여 $m-n$ 의 값은?① $\dfrac{1}{10}$ ② $\dfrac{1}{5}$ ③ $\dfrac{3}{10}$ ④ $\dfrac{2}{5}$ ⑤ $\dfrac{1}{2}$ 정답 ③
좌표평면에서 점 $(-2, \;1)$ 을 지나고 방향벡터가 $\overrightarrow{u}=(a, \;b)$ 인 직선이 원 $ (x-3)^2+(y-2)^2=1$ 과 만나도록 하는 두 양수 $a, \;b$ 에 대하여 $\dfrac{b}{a}$ 의 최댓값은? ① $\dfrac{1}{4}$ ② $\dfrac{1}{3}$ ③ $\dfrac{5}{12}$ ④ $\dfrac{1}{2}$ ⑤ $\dfrac{7}{12}$ 정답 ③
좌표평면에서 두 직선 $\dfrac{x+2}{3}=\dfrac{y-1}{k}, \;\; 2x-5y+1=0$ 이 서로 수직이 되도록 하는 $0$ 이 아닌 실수 $k$ 의 값은? ① $-\dfrac{15}{2}$ ② $-\dfrac{13}{2}$ ③ $-\dfrac{11}{2}$ ④ $-\dfrac{9}{2}$ ⑤ $-\dfrac{7}{2}$ 정답 ①
그림과 같이 좌표평면에서 $x$ 축 위의 두 점 $\rm A, \;B$ 에 대하여 꼭짓점이 $\rm A$ 인 포물선 $p_1$ 과 꼭짓점이 $\rm B$ 인 포물선 $p_2$ 가 다음 조건을 만족시킨다. 이때, 삼각형 $\rm ABC$ 의 넓이는? (가) $p_1$ 의 초점은 $\rm B$ 이고, $p_2$ 의 초점은 원점 $\rm O$ 이다.(나) $p_1$ 과 $p_2$ 는 $y$ 축 위의 두 점 $\rm C, \; D$ 에서 만난다. (다) $\overline{\rm AB}=2$ ① $4 \left ( \sqrt{2} -1 \right )$ ② $3\left ( \sqrt{3} -1 \right )$ ③ $2\left ( \sqrt{5} -1 \right )$ ④ $\sqrt{3} + 1$ ⑤ $\..