일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- 이정근
- 미분
- 접선의 방정식
- 경우의 수
- 확률
- 행렬
- 함수의 그래프와 미분
- 수열의 극한
- 미적분과 통계기본
- 함수의 연속
- 수열
- 심화미적
- 로그함수의 그래프
- 수학질문답변
- 함수의 극한
- 적분
- 기하와 벡터
- 수능저격
- 여러 가지 수열
- 수학질문
- 적분과 통계
- 수악중독
- 이차곡선
- 수만휘 교과서
- 수학2
- 행렬과 그래프
- 정적분
- 도형과 무한등비급수
- 수학1
- 중복조합
- Today
- Total
목록(8차) 수학1 질문과 답변/수열 (256)
수악중독
한 면은 흰 색, 다른 며면은 검은색인 같은 크기의 정사각형 모양의 카드를 다음 규칙에 의해 그림과 같이 놓는다. [1단계] 검은색 면이 보이도록 카드를 한 개 놓는다. [2단계] 1단계에서 놓여진 카드를 흰 색 며면이 보이도록 뒤집고, 그 카드 위쪽과 오른쪽에 검은색 며며니 보이도록 두 개의 카드를 놓는다. [3단계] 2단계에서 놓여진 모든 카드의 색이 바뀌도록 뒤집고 2단계에서 새로 놓은 카드의 위쪽과 오른쪽에 검은색 면이 보이도록 세 개의 카드를 놓는다. \(\vdots\) [\(n\)단계] \(n-1\) 단계에서 놓여진 모든 카드의 색이 바뀌도록 뒤집고 \(n-1\) 단계에서 새로 놓은 카드의 위쪽과 오른쪽에 검은색 면이 보이도록 \(n\) 개의 카드를 놓는다. \(n\) 단계에서 보이는 면의 색..
좌표평면에서 점 \(\rm A_{\it n}\) \((n=1,\;2,\;3,\; \cdots)\) 을 다음 규칙에 따라 정한다. (가) 점 \(\rm A_1\) 의 좌표는 \((0,\;0)\) 이다. (나) 점 \({\rm A}_{4n-3}\) 을 \(x\) 축 방향으로 \((4n-3)\) 만큼 평행이동시킨 점은 \({\rm A}_{4n-2}\) 이다. (다) 점 \({\rm A}_{4n-2}\) 을 \(y\) 축 방향으로 \((4n-2)\) 만큼 평행이동시킨 점은 \({\rm A}_{4n-1}\) 이다. (라) 점 \({\rm A}_{4n-1}\) 을 \(x\) 축 방향으로 \((4n-1)\) 만큼 평행이동시킨 점은 \({\rm A}_{4n}\) 이다. (마) 점 \({\rm A}_{4n}\) 을 \(..
그림과 같이 \(1\) 행에는 \(1\) 개, \(2\) 행에는 \(2\) 개, \(\cdots\), \(n\) 행에는 \(n\) 개의 원을 나열하고 그 안에 다음 규칙에 따라 \(0\) 또는 \(1\) 을 써 넣는다. (가) \(1\) 행의 원 안에는 \(1\) 을 써 넣는다. (나) \(n \le 2\) 일 때, \(1\) 행부터 \((n-1)\) 행까지 나열된 모든 원 안의 수의 합이 \(n\) 이상이면 \(n\) 행에 나열된 모든 원 안에 \(0\) 을 써 넣고, \(n\) 미만이면 \(n\) 행에 나열된 모든 원 안에 \(1\) 을 써 넣는다. \(1\) 행부터 \(32\) 행까지 나열된 워 안에 써 넣은 모든 수의 합을 구하시오. 정답 63
\(1\) 부터 연속된 자연수를 나열하여 각 자릿수로 다음과 같은 수열을 만들었다.\[1,\;2,\;3,\;4,\;5,\;6,\;7,\;8,\;9,\;1,\;0,\;1,\;1,\;1,\;2,\;1,\;3,\;1,\;4,\;\cdots\] 이 수열의 제 \(n\) 항부터 연속된 네 개의 항이 차례로 \(2,\;0,\;1,\;0\) 일 때, 자연수 \(n\) 의 최솟값은? ① \(2960\) ② \(2964\) ③ \(2968\) ④ \(2972\) ⑤ \(2976\) 정답 ④
그림과 같이 좌표평면의 제 \(1\)사분면을 한 변의 길이가 \(1\) 인 정사각형들로 나누어 자연수를 배열하였다. \(y=x^2\;\;(0\le x \le 10)\) 의 그래프가 지나는 한 변의 길이가 \(1\) 인 정사각형에 배열된 수들의 합은? (단, 그래프가 정사각형의 내부를 지나지 않는 경우는 제외한다.) ① \(5625\) ② \(5640\) ③ \(5665\) ④ \(5680\) ⑤ \(5695\) 정답 ③
수열 \(\{a_n\}\) 의 제 \(n\) 항 \(a_n\) 을 자연수 \(k\) 의 양의 제곱근 \(\sqrt{k}\) 를 소수점 아래 첫째 자리에서 반올림하여 \(n\) 이 되는 \(k\) 의 개수라 하자. \(\sum \limits_{i=1}^{10} a_i\) 의 값을 구하시오. 정답 110
그림과 같이 홀수를 삼각형 모양으로 배열하고 어두운 부분에 있는 수를 크기 순으로 나열하여 수열 \[1,\;3,\;7,\;9,\;13,\;17,\;19,\; \cdots\] 을 만들었다. 이 수열의 제 \(66\) 항을 구하시오. 정답 241
그림과 같이 자연수를 다음 규칙에 따라 나열하였다. [규칙1] \(1\) 행에는 \(2, \;3,\;6\) dml \(3\) 개의 수를 차례대로 나열한다. [규칙2] \(n+1\) 행에 나열된 수는 \(1\) 열에 \(2,\;2\) 열부터는 \(n\) 행에 나열된 각 수에 \(2\) 를 곱하여 차례대로 나열한다. \(10\) 행에 나열된 모든 자연수의 합을 \(S\) 라고 할 때, \(S=p \times 2^9 -2\) 이다. 이때, \(p\) 의 값을 구하시오. 정답 13
그림과 같이 넓이가 \(1\) 인 정삼각형 모양의 타일을 다음과 같은 규칙으로 붙인다. [1단계] 정삼각형 모양의 타일을 한 개 붙인다. [\(n\)단계] \(n-1\) 단계에서 붙여진 타일의 바깥쪽 테두리의 각 변에 정삼각형 모양의 타일을 붙인다. 이와 같이 \(10\) 단계를 시행했을 때, 타일로 덮인 부분의 전체의 넓이를 구하시오. 정답 136
\(a,\;b,\;c\) 가 서로 다른 세 실수일 때, 이차함수 \(f(x)=ax^2 +2bx+c\) 에 대한 의 설명 중 옳은 것을 모두 고른 것은? ㄱ. \(a,\;b,\;c\) 가 이 순서로 등차수열을 이루면 \(f(1)=4b\) 이다. ㄴ. \(a,\;b,\;c\) 가 이 순서로 등차수열을 이루면 \(y=f(x)\) 의 그래프는 \(x\) 축과 서로 다른 두 점에서 만난다. ㄷ. \(a,\;b,\;c\) 가 이 순서로 등비수열을 이루면 \(y=f(x)\) 의 그래프는 \(x\) 축과 만나지 않는다. ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ③