일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 확률
- 수학2
- 경우의 수
- 적분과 통계
- 이정근
- 함수의 그래프와 미분
- 행렬
- 적분
- 수열
- 수열의 극한
- 함수의 연속
- 수악중독
- 미분
- 행렬과 그래프
- 수학1
- 수능저격
- 이차곡선
- 수학질문답변
- 로그함수의 그래프
- 미적분과 통계기본
- 도형과 무한등비급수
- 중복조합
- 심화미적
- 수만휘 교과서
- 기하와 벡터
- 정적분
- 함수의 극한
- 여러 가지 수열
- 수학질문
- 접선의 방정식
- Today
- Total
목록(8차) 수학1 질문과 답변/수열의 극한 (188)
수악중독
\(2\) 이상의 자연수 \(n\) 에 대하여 다항식 \( 30 x^{2n-2} +x^{n-1} \) 을 \(2x-1\) 로 나누었을 때의 나머지를 \(R_n\) 이라 할 때, 무한급수 \(R_2 +R_3 +R_4 + \cdots \) 의 값을 구하시오. 정답 11
자연수 \(n\) 에 대하여 \(5^n\) 을 분모라 하는 기약분수 중에서 \(1\) 과 \(2\) 사이에 있는 수들의 합을 \(T_n\) 이라 하자. 예를 들면, \(T_1 = {\dfrac{6}{5}}+ {\dfrac{7}{5}}+ {\dfrac{8}{5}}+ {\dfrac{9}{5}} = 6\) 이다. 무한급수 \(\sum \limits _{n=1}^{\infty} {\dfrac{1}{T_n}} = {\dfrac {b}{a}} \) 일 때, 상수 \(a, \;b\) 의 합 \(a+b\) 의 값은? (단, \(a,\; b\) 는 서로소인 자연수이다.) ① \(28\) ② \(29\) ③ \(30\) ④ \(31\) ⑤ \(32\) 정답 ②
아래 그림과 같이 원 \(\rm O_1 , \;\; O_2 , \;\; O_3 , \;\; \cdots\) 은 서로 외접하면서 두 직선 \(y=3x,\;\; y= {\dfrac{1}{3}} x \) 에 접한다. 원 \(\rm O_1\) 의 중심의 좌표는 \(\left ( \sqrt {10} ,\; \sqrt{10} \right ) \) 이고, 원 \(\rm O_{\it n}\) 의 반지름의 길이를 \(r_n\) 이라 할 때, 무한급수 \(\sum \limits _{n=1}^{\infty} \sqrt {r_n} = a\sqrt{2} +b \sqrt {10} \) 이다. 이 때, 두 유리수 \(a,\; b\) 에 대하여 \(a+b\) 의 값은? ① \(1\) ② \(\dfrac{3}{2}\) ③ \(2\) ..
다음 표와 같이 윗줄에는 수열 \(\{a_n\}\) 이 나열되고 있고, 아랫줄에는 짝수가 나열되어 있다. \[a_1\] \[a_2\] \[a_3\] \[a_4\] \[a_5\] \[\cdots\] \[p\] \[q\] \[\cdots\] \[2\] \[4\] \[6\] \[8\] \[10\] \[\cdots\] \[r\] \[s\] \[\cdots\] 임의의 사각형 모양으로 네 수 \(p,\;q,\;r,\; s\) 를 잡으면 \(ps-qr=400\) 이 성립한다. 이때, \(\lim \limits _{n \to \infty} {\Large \frac{a_n}{n}} \) 의 값은? (단, \(a_1 =3\) ) ① \(-200\) ② \(-197\) ③ \(0\) ④ \(197\) ⑤ \(200\) 정답 ②
\(6\rm L\) 의 파인애플 주스가 들어 있는 음료수 병 \(\rm P\)와 아무 것도 들어 있지 않는 음료수 병 \(\rm Q\) 가 있다. 첫 번째 시행으로 \(\rm P\) 에 들어 있는 주스의 \(\dfrac{1}{2}\) 을 \(\rm Q\) 로 옮긴 다음, \(\rm Q\) 에 들어 있는 주스의 \(\dfrac{1}{3}\) 을 \(\rm P\) 에 다시 옮긴다. 두 번째 시행으로 \(\rm P\) 에 들어 있는 주스의 \(\dfrac{1}{4}\) 을 \(\rm Q\) 로 옮긴 다음, \(\rm Q\) 에 들어 있는 주스의 \(\dfrac{1}{5}\) 을 \(\rm P\) 에 다시 옮긴다. 이와 같이 \(\rm P\) 에서 \(\rm Q\) 로, \(\rm Q\) 에서 \(\rm P\)..
수직선 위에 두 점 \({\rm A}_1 (a) , \;\; {\rm A}_2 (b) \) 에 대하여 \(\overline {\rm A_1 A_2}\) 를 \(3:1\) 로 내분하는 점을 \(\rm A_3\), \(\overline {\rm A_2 A_3} \) 을 \(3:1\) 로 내분하는 점을 \(\rm A_4 , \cdots\) 와 같이 무한히 점을 잡아나갈 때, 점 \({\rm A}_n\) 의 \(x\) 좌표를 \(x_n\) 이라 하자. 이 때, \(\lim \limits _{n \to \infty} x_n \) 의 값은? ① \(\dfrac{a+b}{2}\) ② \(\dfrac{a+2b}{3}\) ③ \(\dfrac{a+3b}{4}\) ④ \(\dfrac{a+4b}{5}\) ⑤ \(\dfrac{..
연립방정식 \(\left\{ {\begin{array}{ll}{\left| x \right| + 2\left| y \right| \le 4}\\{{2^n}\left( {y - x} \right) + y \ge 1}\end{array}} \right. \) 의 해 \((x,\;y) \) 가 나타내는 영역의 넓이를 \(S_n\) 이라 할 때, \(\lim \limits _{n \to \infty} S_n \) 의 값은? (단, \(n\) 은 자연수이다.) ① \(8\) ② \(10\) ③ \(12\) ④ \(14\) ⑤ \(16\) 정답 8
그림과 같이 원점 \(\rm O\) 와 점 \(2,\; 0)\) 을 지름의 양 끝으로 하는 원을 \(\rm C_1\) 이라 하자. 또, 원 \(\rm C_1\) 과 직선 \(y=x\) 가 만나는 두 점을 지름의 양 끝으로 하는 원을 \(\rm C_2\), 원 \(\rm C_2\) 와 \(y\) 축이 만나는 두 점을 지름의 양 끝으로 하는 원을 \(\rm C_3\) 이라 하자. 또 원, \(\rm C_3\) 과 직선 \(y=-x\) 가 만나는 두 점을 지름의 양 끝으로 하는 원을 \(\rm C_4\), 원 \(\rm C_4\) 와 \(x\) 축이 만나는 두 점을 지름의 양 끝으로 하는 원을 \(\rm C_5\) 라 하자. 이와 같은 방법으로 중심이 차례로 직선 \(y=x\) , \(y\) 축, 직선 \(y..
그림과 같이 반지름의 길이가 \(a\) 인 반원 \(\rm C_1\) 에 내접하는 정사각형을 \(A_1\) 이라 하자. \(A_1\) 의 한 변의 길이를 반지름으로 하는 반원 \(\rm C_2\) 에 내접하는 정사각형을 \(A_2\) 라 하자. \(A_2\) 의 한 변의 길이를 반지름으로 하는 반원 \(\rm C_3\) 에 내접하는 정사각형을 \(A_3\) 라 하자. 이와 같은 과정을 계속하여 정사각형을 만들어 나갈 때, 이들 정사각형의 넓이의 합은? ① \(a^2\) ② \(2a^2\) ③ \(3a^2\) ④ \(4a^2\) ⑤ \(5a^2\) 정답 ④
수직선 위의 두 점 \(\rm A_1 (0) ,\; A_2 (90)\) 에 대하여 \(\overline {\rm A_1 A_2}\) 를 \(3:1\) 로 내분하는 점을 \(\rm A_3\), \(\overline{\rm A_2 A_3}\) 를 \(3:1\) 로 내분하는 점을 \(\rm A_4 , \; \cdots , \; \overline{{\rm A}_{\it n} {\rm A}_{{\it n}+1}}\) 을 \(3:1\) 로 내분하는 점을 \({\rm A}_{n+2}\) 라 하자. 점 \({\rm A}_n\) 의 좌표를 \(a_n\) 이라 할 때, \(\lim \limits _{n \to \infty} a_n\) 의 값을 구하시오. 정답 72