일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 행렬
- 수학질문
- 수악중독
- 로그함수의 그래프
- 수학질문답변
- 이차곡선
- 도형과 무한등비급수
- 적분
- 미적분과 통계기본
- 경우의 수
- 수학1
- 중복조합
- 정적분
- 행렬과 그래프
- 함수의 그래프와 미분
- 접선의 방정식
- 수학2
- 수만휘 교과서
- 기하와 벡터
- 미분
- 여러 가지 수열
- 이정근
- 수열
- 적분과 통계
- 함수의 극한
- 함수의 연속
- 수능저격
- 수열의 극한
- 심화미적
- 확률
- Today
- Total
목록(9차) 기하와 벡터 문제 풀이 (323)
수악중독
그림과 같이 중심이 같고 반지름의 길이가 $1, \; 3$ 인 두 원을 각각 밑면으로 하는 두 원기둥의 사이에 반지름의 길이가 $1$ 인 구 $12$ 개가 서로 외접하면서 들어 있다. 아래쪽에 있는 $6$ 개의 구 중에서 서로 외접하는 두 구를 $S_1, \; S_2$ 라고 하고 위쪽에 있는 구 중에서 구 $S_1 \; S_2$ 에 모두 접하는 구를 $S_3$, 두 구 $S_2, \; S_3$ 에 모두 접하는 $S_1$ 이 아닌 구를 $S_4$ 라고 하자. 네 구 $S_1, \; S_2, \; S_3, \; S_4$ 의 중심을 각각 $\rm O_1, \; O_2, \; O_3, \; O_4$ 라고 할 때, 평면 $\rm O_1O_2O_3$ 와 평면 $\rm O_2O_3O_4$ 가 이루는 예각의 크기를 $..
그림과 같이 반지름의 길이가 $1$ 인 $4$ 개의 구 $S_1, \; S_2, \; S_3, \; S_4$ 가 서로 외접하며 놓여 있다. $4$ 개의 구 $S_1, \; S_2, \; S_3, \; S_4$ 위를 움직이는 점 $\rm P_1, \; P_2, \; P_3, \; P_4$ 에 대하여 $\left | 4 \overrightarrow{\rm P_1P_2} + \overrightarrow{\rm P_1P_3} + \overrightarrow{\rm P_1P_4} \right |$ 의 최댓값이 $a+b\sqrt{3}$ 일 때, $a+b$ 의 값을 구하시오. (단, $a, \; b$ 는 정수이다.) 정답 $18$
좌표평면에서 중심이 $\rm O$ 이고 반지름의 길이가 $1$ 인 원 위의 한 점을 $\rm A$, 중심이 $\rm O$ 이고 반지름의 길이가 $3$ 인 원 위의 한 점을 $\rm B$ 라 할 때, 점 $\rm P$ 가 다음 조건을 만족시킨다. (가) $\overrightarrow{\rm OB} \cdot \overrightarrow{\rm OP} = 3 \overrightarrow{\rm OA} \cdot \overrightarrow{\rm OP}$ (나) $\left | \overrightarrow{\rm PA} \right |^2 + \left | \overrightarrow{\rm PB} \right |^2 = 20$ $\overrightarrow{\rm PA} \cdot \overrightarr..
좌표평면에서 세 직선 $l, \; m, \; n$ 위의 임의의 점을 각각 $\rm P, \; Q, \; R$ 이라 하자. 원점 $\rm O$ 를 시점으로 하는 세 점 $\rm P, \; Q, \; R$ 의 위치벡터를 각각 $\overrightarrow{p}, \; \overrightarrow{q},\; \overrightarrow{r}$ 라 할 때, 원점 $\rm O$ 를 시점으로 하는 두 위치벡터 $\overrightarrow{a}, \; \overrightarrow{b}$ 에 대하여 $$\begin{aligned} \overrightarrow{p} &= t \overrightarrow{a} + (1-t) \overrightarrow{b} \;\; (t는 \; 실수) \\ \overrightarrow{..
그림과 같이 한 변의 길이가 $2$ 인 정삼각형 $\rm ABC$ 를 밑면으로 하고 $\overline{\rm OA}= \overline{\rm OB}=\overline{\rm OC}=\sqrt{3}$ 인 정삼각뿔 $\rm O-ABC$ 가 있다. 정삼각형 $\rm ABC$ 에 내접하는 원을 밑면으로 하는 반구와 평면 $\rm OAB$ 가 만나서 생기는 도형을 $C$ 라 하고, 정삼각형 $\rm ABC$ 에 내접하는 원의 중심을 $\rm H$ 라 하자. 도형 $C$ 의 경계 또는 내부의 점 $\rm P$ 와 선분 $\rm OC$ 를 $2:1$ 로 내분하는 점 $\rm Q$ 에 대하여 $\overrightarrow{\rm HP} \cdot \overrightarrow{\rm QH}$ 의 최솟값은 $\dfra..
그림과 같이 직선 $l$ 을 교선으로 하고 이루는 각의 크기가 $\dfrac{\pi}{3}$ 인 두 평면 $\alpha, \; \beta$ 가 있고, 평면 $\alpha$ 위의 점 $\rm A$ 와 평면 $\beta$ 위의 점 $\rm B$ 가 있다. 점 $\rm A$ 에서 평면 $\beta$ 에 내린 수선의 발을 $\rm A'$, 점 $\rm B$ 에서 평면 $\alpha$ 에 내린 수선의 발을 $\rm B'$ 이라 하자. $\overline{\rm AA'} = \sqrt{3}$, $\overline{\rm BB'}=\sqrt{3}$, $\overline{\rm A'B'}=\sqrt{2}$ 일 때, 사면체 $\rm AA'B'B$ 의 부피는? ① $\dfrac{\sqrt{3}}{2}$ ② $\dfrac{..
그림과 같이 중심이 $\rm O$ 이고 선분 $\rm AB$ 를 지름으로 하는 반원이 있다. $\left | \overrightarrow{\rm OA} \right | = 1$ 일 때, 반원 위의 두 점 $\rm C, \; D$ 가 다음 조건을 만족시킨다. (가) $\overrightarrow{\rm OC} \cdot \overrightarrow{\rm BA}=1$(나) $\left | \overrightarrow{\rm OC}- \overrightarrow{\rm OD} \right | = \sqrt{2}$ $\overrightarrow{\rm AC} \cdot \overrightarrow{\rm BD} = a + b \sqrt{3}$ 일 때, $32 \left (a^2 +b^2 \right )$ 의 ..
다음 그림과 같이 $z$ 축 위의 점 $\rm A(0, \; 0,\; 4)$ 에서 $xy$ 평면 위의 직선 $x=3$ 위의 점 $\rm P$ 를 거쳐 점 $\rm B(5, \; 4, \;0)$ 까지 이르는 거리의 최솟값을 $k$ 라고 할 때, $k^2$ 의 값을 구하시오. 정답 $65$만약 점 $\rm A$ 가 $xy$ 평면 위의 점이었다면 쉽게 최단 거리를 구할 수 있을 것입니다. 그래서 생각해 볼 수 있는 것이 원뿔에서 모선의 길이는 항상 같다를 이용하여 점 $\rm A$ 를 $xy$ 평면으로 옮기는 것입니다. 그럼 어떻게 원뿔을 그려야 할까를 생각해보면, 아래 그림처럼 점 $(3, \; 0, \; 0)$ 을 중심으로 하고, 반지름의 길이는 $5$ 이면서 (중심에서 점 $\rm A$ 까지의 거리가 $..
다음 그림과 같이 직사각뿔 $\rm A-BCDE$ 에서 밑면은 $\overline{\rm BC}=8$, $\overline{\rm BE}=6$ 인 직사각형이고, $\overline{\rm AB}=\overline{\rm AC}=\overline{\rm AD}=\overline{\rm AE}=13$ 이다. 삼각형 $\rm ABE$ 를 포함하는 평면과 선분 $\rm AC$ 가 이루는 각의 크기를 $\theta$ 라고 할 때, $\sin \theta = \dfrac{q}{p}\sqrt{10}$ 이라고 한다. $p+q$ 의 값을 구하시오. (단, $p, \; q$ 는 서로소인 자연수이다.) 정답 $77$그림에서처럼 점 $\rm B$ 를 원점으로 하는 3차원 좌표축을 생각하자. 점 $\rm A$ 에서 $xy$ 평..
좌표공간에서 평면 $y=\left ( \tan 75^{\rm o} \right ) x $ 위의 도형 $S$ 를 벡터 $\overrightarrow{v}=(1, \; -1, \; 0)$ 에 평행한 광선으로 비추었더니, $zx$ 평면에 나타난 도형 $S$ 의 그림자는 중심이 $(4, \;0, \; 0)$ 이고 반지름의 길이가 $3$ 인 원이 되었다. 도형 $S$ 의 넓이는? ① $3\sqrt{3}\pi$ ② $4\sqrt{3}\pi$ ③ $\dfrac{9\sqrt{6}}{4}\pi$ ④ $3\sqrt{6}\pi$ ⑤ $\dfrac{9\sqrt{6}}{2}\pi$ 정답 ④