관리 메뉴




수악중독

(이과) 내적의 기하학적의미&내적의 최솟값_난이도 상 본문

(9차) 기하와 벡터 문제 풀이/벡터

(이과) 내적의 기하학적의미&내적의 최솟값_난이도 상

수악중독 2017. 5. 30. 01:50

그림과 같이 한 변의 길이가 $2$ 인 정삼각형 $\rm ABC$ 를 밑면으로 하고 $\overline{\rm OA}= \overline{\rm OB}=\overline{\rm OC}=\sqrt{3}$ 인 정삼각뿔 $\rm O-ABC$ 가 있다. 정삼각형 $\rm ABC$ 에 내접하는 원을 밑면으로 하는 반구와 평면 $\rm OAB$ 가 만나서 생기는 도형을 $C$ 라 하고, 정삼각형 $\rm ABC$ 에 내접하는 원의 중심을 $\rm H$ 라 하자. 도형 $C$ 의 경계 또는 내부의 점 $\rm P$ 와 선분 $\rm OC$ 를 $2:1$ 로 내분하는 점 $\rm Q$ 에 대하여 $\overrightarrow{\rm HP} \cdot \overrightarrow{\rm QH}$ 의 최솟값은 $\dfrac{q}{p}$ 이다. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.)






-->