일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수학1
- 수열의 극한
- 함수의 극한
- 행렬
- 접선의 방정식
- 수만휘 교과서
- 적분과 통계
- 중복조합
- 기하와 벡터
- 수학2
- 수악중독
- 수학질문
- 확률
- 여러 가지 수열
- 정적분
- 경우의 수
- 미분
- 함수의 그래프와 미분
- 적분
- 함수의 연속
- 수열
- 이정근
- 심화미적
- 이차곡선
- 수능저격
- 도형과 무한등비급수
- 미적분과 통계기본
- 행렬과 그래프
- 수학질문답변
- 로그함수의 그래프
- Today
- Total
목록(9차) 기하와 벡터 문제 풀이/벡터 (149)
수악중독
좌표평면 위에 오른쪽 그림과 같이 벡터 \(\overrightarrow{a_0},\;\;\overrightarrow{a_1},\;\;\cdots,\;\;\overrightarrow{a_6}\) 이 평면 위에 주어져 있다. \(\left | \overrightarrow{a_i} \right | = s_i \;\; (i=0,\;1,\; \cdots ,\; 6)\) 라 할 때, 다음 중 옳은 것은? ① \(s_0 - s_1 +s_3 -s_4 + s_6 =0\) ② \(s_0 +s_1 -s_3 -s_4 +s_6 =0\) ③ \(s_0 +s_1 +s_3 -s_4 -s_6 =0\) ④ \(s_0 - s_1 -s_3 -s_4 +s_6 =0\) ⑤ \(s_0 -s_1 -s_3 +s_4 +s_6 =0\) 정답 ②
좌표공간에서 구 \(S\) 는 \(xy\) 평면에 접하고 두 점 \({\rm A}(0,\;0,\;1),\;\; {\rm B} (0,\;1,\;2)\) 를 지난다. 이 때, \(S\) 의 반지름의 길이의 최댓값과 최솟값의 차는? ① \(1\) ② \(2\) ③ \(3\) ④ \(4\) ⑤ \(5\) 정답 ④
두 개의 구 \[x^2 +y^2 +z^2 -6x-8y-2z+1=0\] \[x^2 +y^2 +z^2+2x+4y+6z-1=0\] 의 교선을 품으며 원점을 지나는 구의 중심과 반지름의 길이를 순서대로 적은 것은? ① \((1,\;1,\;1),\;\;\sqrt{3}\) ② \((1,\;-1,\;1),\;\;\sqrt{3}\) ③ \((1,\;1,\;-1),\;\;\sqrt{3}\) ④ \((1,\;1,\;-1),\;\;2\sqrt{3}\) ⑤ \((1,\;-1,\;-1),\;\;2\sqrt{3}\) 정답 ③
공간에서 두 점 \({\rm A}(1,\;-3,\;2),\;\; {\rm B}(-2,\;0,\;1)\) 이 주어졌을 때, \(\overline {\rm AP} : \overline{\rm BP} = 2:1\) 이 되는 점 \({\rm P}(x,\;y,\;z)\) 의 자취와 \(xy\) 평면과의 교선의 방정식은 중심이 \((a,\;b)\) 이고 반지름의 길이가 \(r\) 인 원이다. 이때, \(a+b+r^2\) 의 값은? ① \(-3\) ② \(-1\) ③ \(\dfrac{7}{3}\) ④ \(4\) ⑤ \(6\) 정답 ⑤
점 \({\rm A}(1,\;1,\;-1)\) 과 직선 \(\dfrac{x-2}{2}=-y-1=z-1\) 위의 두 점 \(\rm B,\;C\) 를 꼭짓점으로 하는 정삼각형 \(\rm ABC\) 의 넓이를 \(S\) 라 할 때, \(S^2\) 의 값을 구하시오. 정답 3
그림과 같이 세 힘 \(\overrightarrow {f_1},\; \overrightarrow {f_2}, \; \overrightarrow{f_3}\) 이 한 점에서 서로 평형을 이루고 있을 때 즉, \(\overrightarrow {f_1}+\overrightarrow {f_2} + \overrightarrow {f_3}=\overrightarrow{0}\) 일 때, \(\dfrac{\left | \overrightarrow{f_1} \right |}{\sin \alpha} = \dfrac{ \left | \overrightarrow{f_2} \right | } {\sin \beta} = \dfrac{\left | \overrightarrow{f_3} \right |}{\sin \gamma}\) 가..
그림과 같이 두 개의 반지름 \(\rm OA,\; OB\) 는 서로 수직이고, \(\overline{\rm OC}\) 는 \(\angle \rm AOB\) 의 이등분선이다. \(\overrightarrow{\rm OA}=\overrightarrow {a},\;\; \overrightarrow{\rm OB}=\overrightarrow{b} \) 라 하고 \(\overrightarrow {\rm OC}\) 를 \(m \overrightarrow {a} + n \overrightarrow{b}\) 의 꼴로 나타낼 때, \(m+n\) 의 값은? ① \(1\) ② \(\sqrt{2}\) ③ \(\sqrt{3}\) ④ \(2\) ⑤\(3\) 정답 ②
좌표공간에서 점의 집합 \[A=\left \{ \left ( \cos \alpha \cos \beta , \; \cos \alpha \sin \beta ,\; \sin \alpha \right )\; |\; 0 \le \alpha \le 2 \pi ,\;\; 0 \le \beta \le 2 \pi \right \}\] 가 있다. 집합 \(A\) 와 평면 \(z= \dfrac{\sqrt{3}}{2}\) 이 만나서 생기는 원의 넓이는? ① \(\dfrac{\pi}{4}\) ② \(\dfrac{\pi}{3}\) ③ \(\dfrac{\pi}{2}\) ④ \(\dfrac{2}{3} \pi\) ⑤ \(\dfrac{3}{4} \pi\) 정답 ①
바닥과 옆면이 모두 수직인 어느 방 구석에 반지름 \(1 \rm cm\) 인 \(A\) 구슬이 세 벽에 닿은 채 놓여 있다. 멀리서 반지름이 다른 구슬을 던져 \(A\) 구슬을 맞추려고 한다. 이때, 던진 구슬의 반지름의 최댓값은? ① \(1+\sqrt{3}\) ② \(2+\sqrt{3}\) ③ \(3+\sqrt{3}\) ④ \(\dfrac{1+\sqrt{3}}{2}\) ⑤ \(\dfrac{5-\sqrt{3}}{2}\) 정답 ②
두 점 \({\rm A}(6,\;0,\;0),\;\; {\rm B}(0,\;3,\;0)\) 에 대하여 \(\overline{\rm PA} = 2 \overline{\rm PB}\) 를 만족시키는 점 \(\rm P\) 와 구 \(x^2 +y^2 +z^2 =1\) 위의 점 \(\rm Q\) 에 대하여 \(\overline {\rm PQ}\) 의 최댓값은? ① \(\sqrt{5}+1\) ② \(2\sqrt{5}+1\) ③ \(3\sqrt{5}+1\) ④ \(4\sqrt{5}+1\) ⑤ \(5\sqrt{5}+1\) 정답 ④