일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 이정근
- 경우의 수
- 수열의 극한
- 이차곡선
- 수열
- 수학질문답변
- 중복조합
- 심화미적
- 미적분과 통계기본
- 수학2
- 도형과 무한등비급수
- 행렬과 그래프
- 적분과 통계
- 확률
- 미분
- 수능저격
- 로그함수의 그래프
- 여러 가지 수열
- 함수의 연속
- 함수의 극한
- 수학1
- 행렬
- 적분
- 함수의 그래프와 미분
- 수학질문
- 수악중독
- 접선의 방정식
- 수만휘 교과서
- 정적분
- 기하와 벡터
- Today
- Total
목록정적분으로 정의된 함수 (37)
수악중독
$ab0)$ 에 대하여 부등식 $$g(x)-k \ge xf(x)$$ 를 만족시키는 양의 실수 $x$ 가 존재할 때, 이 $x$ 의 값 중 최솟값을 $h(k)$ 라 하자. 함수 $g(x)$ 와 $h(k)$ 는 다음 조건을 만족시킨다. (가) 함수 $g(x)$ 는 극댓값 $\alpha$ 를 갖고 $h(\alpha)=2$ 이다.(나) $h(k)$ 의 값이 존재하는 $k$ 의 최댓값은 $8e^{-2}$ 이다. $100 \left (a^2 + b^2 \right )$ 의 값을 구하시오. $\left ( 단, \; \lim \limits_{x \to \infty} f(x)=0 \right )$ 정답 $125$
최고차항의 계수가 양수인 삼차함수 $f(x)$ 가 다음 조건을 만족시킨다. (가) 함수 $f(x)$ 는 $x=0$ 에서 극댓값, $x=k$ 에서 극솟값을 갖는다. (단 $k$ 는 상수)(나) $1$ 보다 큰 모든 실수 $t$ 에 대하여 $\displaystyle \int_0^t \left | f'(x) \right | \; dx = f(t)+f(0)$ 이다. 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. $\displaystyle \int_0^k f'(x) \; dx < 0$ㄴ. $0
이 문제는 네이버 아이디 110615 님께서 출제하신 문제입니다. 110615님의 허락을 얻어 해설 영상을 올립니다. 해설 영상의 공유를 허락해주신 110615님께 감사의 말씀을 전합니다. 함수 $f(x)=-4x^3 + 6x -1$ 과 모든 실수 $m$ 에 대하여 방정식 $\displaystyle \int_0^x f(t)\; dt=mx$ 를 만족시키는 $x$ 의 최솟값과 최댓값을 각각 $g_1(m), \; g_2(m)$ 이라 하고, $g_1(m)
정의역이 $\{x \; | \; 0 \le x \le 10\}$ 이고 다음 조건을 만족시키는 모든 연속함수 $f(x)$ 에 대하여 $\displaystyle \int_0^{10} f(x)\;dx$ 의 최댓값은 $\dfrac{q}{p}$ 이다. $p+q$ 의 값을 구하시오. (단, $p, \; q$ 는 서로소인 자연수이다.) (가) $f(0)=1$(나) $0 \le m \le 9$ 인 각각의 정수 $m$ 에 대하여 $$g(t)=f(m+t)-f(m)\;\; (0
실수 전체의 집합에서 미분가능한 함수 $f(x)$ 가 두 실수 $a, \; b\; \left (0
함수 $f(x)=\displaystyle \int_0^x \sin (\pi \cos t) \; dt$ 에 대하여 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. $f'(0)=0$ ㄴ. 함수 $y=f(x)$ 의 그래프는 원점에 대하여 대칭이다. ㄷ. $f(\pi)=0$ ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
함수 $$f(x)=\left \{ \begin{array}{lc} e^x & (0 \le x < 1) \\ e^{2-x}&(1 \le x \le 2) \end{array} \right . $$ 에 대하여 열린 구간 $(0, \; 2)$ 에서 정의된 함수 $$g(x) = \displaystyle \int_0^x |f(x)-f(t)|\;dt$$ 의 극댓값과 극솟값의 차는 $ae+b\sqrt[3]{e^2}$ 이다. $(ab)^2$ 의 값을 구하시오. (단, $a, \; b$ 는 유리수이다.) 정답 $36$
실수 전체의 집합에서 이계도함수가 존재하는 함수 $f(x)$ 와 그 역함수 $g(x)$ 에 대하여 함수 $h(x)$ 를 $$h(x) = \displaystyle \int_x^{g(x)} f(t) \; dt$$ 라 하자. 두 함수 $f(x)$ 와 $g(x)$ 가 다음 조건을 만족시킨다. (가) 모든 실수 $x$ 에 대하여 $f'(x)>0$ 이고, $f''(2)
함수 $f(x)=\dfrac{1}{e}x^4-ex^2+c$ ($c$ 는 상수)와 실수 $a$ 에 대하여 함수 $g(x)$를 $g(x)=\displaystyle \int_a^x f(t)\; dt$ 라 하자. 함수 $y=g(x)$ 의 그래프가 $x$ 축과 서로 다른 두 점에서만 만나도록 하는 모든 $a$ 의 값을 작은 수부터 크기순으로 나열하면 $\alpha_1, \; \alpha_2, \; \cdots, \; \alpha_n$ ($n$ 은 자연수) 이다. $a=\alpha_n$ 일 때, 함수 $g(x)$ 와 상수 $k$ 는 다음 조건을 만족시킨다. (가) 함수 $g(x)$ 는 $x=e$ 에서 극솟값을 갖는다.(나) $\displaystyle \int_{\alpha_n}^{\alpha_1} g(x)\; dx..
$x \ge 0$에서 $f(x)>0$ 인 연속함수 $f(x)$ 와 일차함수 $g(x)$ 가 임의의 자연수 $n$ 에 대하여 다음 조건을 만족시킨다. (가) 닫힌 구간 $[0, \; 1]$ 에서 $f(x)=2^{-x}$ 이다.(나) 열린 구간 $(2n-1, \; 2n)$ 의 임의의 실수 $t$ 에 대하여 곡선 $y=f(x)$ 와 $x=t$ 및 $x$ 축, $y$ 축으로 둘러싸인 부분의 넓이를 $S(t)$ 라 할 때, $S'(t)=nt+f(2n)-2n^2$ 이다.(다) 닫힌 구간 $[2n, \; 2n+1]$ 의 임의의 실수 $x$ 에 대하여 $f(x)=f(x-2)+g(n)$ 이다. $g \left ( \dfrac{25}{2} \right ) \times \displaystyle \int_2^4 f(x) \;..