일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 수학1
- 여러 가지 수열
- 함수의 그래프와 미분
- 함수의 극한
- 미적분과 통계기본
- 확률
- 적분
- 수능저격
- 이차곡선
- 함수의 연속
- 중복조합
- 정적분
- 수학질문
- 기하와 벡터
- 수만휘 교과서
- 적분과 통계
- 미분
- 접선의 방정식
- 수학2
- 수악중독
- 경우의 수
- 행렬과 그래프
- 이정근
- 수열의 극한
- 로그함수의 그래프
- 심화미적
- 수학질문답변
- 도형과 무한등비급수
- 수열
- 행렬
- Today
- Total
목록수학2 (267)
수악중독
그림과 같이 원점 \(\rm O\) 를 중심으로 하고 반지름의 길이가 \(10\) 인 원이 있다. 직선 \(y= \sqrt{3} x\) 와 원이 제1사분면에서 만나는 점을 \(\rm A\) 라 하자. 점 \(\rm P\) 는 원점 \(\rm O\) 를 출발하여 \(x\) 축을 따라 양의 방향으로 매초 \(2\) 의 일정한 속력으로 움직인다. 점 \(\rm P\) 가 원점 \(\rm O\) 를 출발하여 \(t\) 초가 되는 순간, 점 \(\rm P\) 를 지나고 직선 \(y=\sqrt{3}x\) 에 평행한 직선이 제1사분면에서 원과 만나는 점을 \(\rm Q\) 라 하자. 세 선분 \(\rm AO, \; OP, \; PQ\) 와 호 \(\rm QA\) 로 둘러싸인 부분의 넓이를 \(S\)라 할 때, 점 \..
실수 전체의 집합에서 정의된 두 함수 \[f\left( x \right) = {\sin ^2}x + a\cos x,\;\;\;g\left( x \right) = \left\{ {\begin{array}{ll}{0\;\;\;\;\;\left( {x
그림과 같이 중심이 \({\rm A}(3, \;0)\) 이고 점 \({\rm B}(6, \;0)\) 을 지나는 원이 있다. 이 원 위의 점 \(\rm P\) 를 지나는 두 직선 \(\rm AP, \; BP\) 가 \(y\) 축과 만나는 점을 각각 \(\rm Q, \;R\) 이라 하자. \(\angle \rm PBA = \theta\) 라 하고, 삼각형 \(\rm PQR\) 의 넓이를 \(S(\theta)\) 라 할 때, \( \lim \limits_{\theta \to +0} \dfrac{S(\theta)}{\theta ^5}\) 의 값을 구하시오. (단, \(0< \theta < \dfrac{\pi}{4}\) ) 정답 \(18\)
그림과 같이 반지름의 길이가 \(1\) 인 원에 외접하고 \( \angle {\rm CAB}=\angle{\rm BCA}=\theta\) 인 이등변삼각형 \(\rm ABC\) 가 있다. 선분 \(\rm AB\) 의 연장선 위에 점 \(\rm A\) 가 아닌 점 \(\rm D\) 를 \( \angle {\rm DCB}=\theta\) 가 되도록 잡는다. 삼각형 \(\rm BDC\) 의 넓이를 \(S(\theta)\) 라 할 때, \( \lim \limits_{\theta \to + \theta} \{ \theta \times S(\theta)\} \) 의 값은? (단, \(0
그림과 같이 직선 \(x=-1\) 위의 점 \(\rm P\), 직선 \(x=3\sqrt{3}\) 위의 점 \(\rm Q\), 원점 \(\rm O\) 에 대하여 \(\angle \rm POQ=\dfrac{\pi}{2}\) 이다. 직선 \(x=3\sqrt{3}\) 이 \(x\) 축과 만나는 점을 \(\rm R\) 라 하고, \(\angle \rm QOR = \theta\) 라 할 때, \(\overline{\rm OP} + \overline{\rm OQ}\) 의 최솟값을 구하시오. (단, 점 \(\rm P, \;Q\) 의 \(y\) 좌표는 양수이다.) 정답 \(8\)
그림과 같이 지점 \(\rm P\) 에서 서로 수직으로 만나는 두 직선 도로가 있다. 두 직선 도로 \(\rm PA, \; PB\) 에서 각각 \(\rm 16 km ,\;2km\) 떨어진 마을을 지나고 두 직선 도로를 연결하는 새직선 도로를 건설하려고 한다. 새 직선 도로와 도로 \(\rm PA\) 가 이루는 예각의 크기를 \(\theta\) 라고 할 때, 새 직선 도로의 길이가 최소이기 위한 \(\tan \theta\) 의 값은? ① \(1\) ② \(2\) ③ \(\sqrt{5}\) ④ \(\sqrt{6}\) ⑤ \(2\sqrt{2}\) 정답 ②
지점 \(\rm O\) 와 지점 \(\rm E\) 사이의 거리는 \(40\rm m\) 이다. 오른쪽 그림과 같이 갑은 지점 \(\rm O\) 에서 출발하여 선분 \(\rm OE\) 에 수직인 반직선 \(\rm OS\) 를 따라 초속 \(3 \rm m\) 의 일정한 속력으로 달리고 을은 갑이 출발한 지 \(10\) 초가 되는 순간 지점 \(\rm E\) 에서 출발하여 선분 \(\rm OE\) 에 수직인 반직선 \(\rm EN\) 을 따라 초속 \(\rm 4m \) 의 일정한 속력으로 달리고 있다. 갑과 을의 지점을 연결하여 만든 선분과 선분 \(\rm OE\) 가 만나서 이루는 각을 \(\theta\)(라디안)라 할 떄, 갑이 출발한 지 \(20\) 초가 되는 순간 \(\theta\) 의 변화율은? ① \..
함수 \(f(x)=2|x-4|-4\) 에 대하여 부등식 \[\dfrac{x-3}{f(x)}\geq 1\] 을 만족시키는 모든 자연수 \(x\) 의 값의 합은? ① \(18\) ② \(21\) ③ \(24\) ④ \(27\) ⑤ \(30\) 정답 ③
양의 실수 전체의 집합에서 미분가능한 함수 \(f(x)\) 에 대하여 함수 \(g(x)\) 를 \[g(x)=f(x) \ln x^4\] 이라 하자. 곡선 \(y=f(x)\) 위의 점 \((e, \;-e)\) 에서의 접선과 곡선 \(y=g(x)\) 위의 점 \((e, \;-4e)\) 에서의 접선이 서로 수직일 때, \(100f'(e)\) 의 값을 구하시오. 정답 \(50\)