일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수학2
- 미분
- 함수의 연속
- 심화미적
- 수능저격
- 로그함수의 그래프
- 수학질문
- 함수의 극한
- 이정근
- 행렬
- 여러 가지 수열
- 접선의 방정식
- 확률
- 함수의 그래프와 미분
- 수열의 극한
- 수악중독
- 적분
- 수열
- 미적분과 통계기본
- 수만휘 교과서
- 정적분
- 경우의 수
- 이차곡선
- 수학질문답변
- 수학1
- 기하와 벡터
- 중복조합
- 적분과 통계
- 도형과 무한등비급수
- 행렬과 그래프
- Today
- Total
목록수악중독 (2132)
수악중독
그림과 같이 포물선 \(y^2=8x\) 위의 네 점 \(\rm A, \; B,\;C,\;D\) 를 꼭짓점으로 하는 사각형 \(\rm ABCD\) 에 대하여 두 선분 \(\rm AB\) 와 \(\rm CD\) 가 각각 \(y\) 축과 평행하다. 사각형 \(\rm ABCD\) 의 두 대각선의 교점이 포물선의 초점 \(\rm F\) 와 일치하고 \(\overline{\rm DF}=6\) 일 때, 사각형 \(\rm ABCD\) 의 넓이는? ① \(14\sqrt{2}\) ② \(15\sqrt{2}\) ③ \(16\sqrt{2}\) ④ \(17\sqrt{2}\) ⑤ \(18\sqrt{2}\) 정답 ⑤
그림과 같이 \(1, \;2,\;3,\;4,\;5,\;6\) 의 숫자가 한 면에만 각각 적혀 있는 \(6\) 장의 카드가 일렬로 놓여 있다. 주사위 한 개를 던져서 나온 눈의 수가 \(2\) 이하이면 가장 작은 숫자가 적혀 있는 카드 \(1\) 장을 뒤집고, \(3\) 이상이면 가장 작은 숫자가 적혀 있는 카드부터 차례로 \(2\) 장의 카드를 뒤집는 시행을 한다. \(3\) 번째 시행에서 \(4\) 가 적혀 있는 카드가 뒤집어질 확률은? (단, 모든 카드는 한 번만 뒤집는다.)① \(\dfrac{4}{9}\) ②\(\dfrac{13}{27}\) ③ \(\dfrac{14}{27}\) ④ \(\dfrac{5}{9}\) ⑤ \(\dfrac{16}{27}\) 정답 ③
구간 \((0,\; \infty)\) 에서 연속인 함수 \(f(x)\) 의 한 부정적분을 \(F(x)\) 라 할 때, 함수 \(F(x)\) 가 다음 조건을 만족시킨다. (가) 모든 양수 \(x\) 에 대하여 \(F(x)+xf(x)=(2x+2)e^x\)(나) \(F(1)=2e\) \(F(3)\) 의 값은? ① \(\dfrac{1}{4}e^3\) ② \(\dfrac{1}{2}e^3\) ③ \(e^3\) ④ \(2e^3\) ⑤ \(4e^34\) 정답 ④
그림과 같이 반지름의 길이가 \(6\) 이고 중심각의 크기가 \(\dfrac{\pi}{2}\) 인 부채꼴 \(\rm OAB\) 가 있다. \(\angle \rm COA= \theta \; \left ( 0< \theta < \dfrac{\pi}{4} \right )\) 가 되도록 호 \(\rm AB\) 위의 점 \(\rm C\) 를 잡고, 점 \(\rm C\) 에서의 접선이 변 \(\rm OA\) 의 연장선, 변 \(\rm OB\) 의 연장선과 만나는 점을 각각 \(\rm P, \;Q\) 라 하자. \(\overline{\rm PQ}=15\) 일 때, \(\tan 2 \theta\) 의 값은? ① \(\dfrac{4}{3}\) ② \(\dfrac{3}{2}\) ③ \(\dfrac{5}{3}\) ④ \(\..
검은 바둑돌 ●과 희 바둑돌 ○을 일렬로 나열하였을 때 이웃한 두 개의 바둑돌의 색이 나타날 수 있는 유형은으로 \(4\) 가지이다. 예를 들어, \(6\) 개의 바둑돌을 \(2\)번, \(1\)번, \(1\)번, \(1\)번 나타나도록 일렬로 나열하는 모든 경우의 수는 아래와 같이 \(5\) 이다.\(10\) 개의 바둑돌을 \(4\)번, \(2\)번, \(2\)번, \(1\)번 나타나도록 일렬도 나열하는 모든 경우의 수는? (단, 검은 바둑돌과 흰 바둑돌은 각각 \(10\) 개 이상씩 있다.) ① \(35\) ② \(40\) ③ \(45\) ④ \(50\) ⑤ \(55\) 정답 ③
수직선 위를 움직이는 점 \(\rm P\) 의 시각 \(t\) 에서의 위치 \(x(t)\) 가 \[x(t)=t+\dfrac{20}{\pi ^2} \cos (2\pi t)\] 이다. 점 \(\rm P\) 의 시각 \(t=\dfrac{1}{3}\) 에서의 가속도의 크기를 구하시오. 정답 \(40\)
그림과 같이 모든 모서리의 길이가 \(6\) 인 정삼각기둥 \(\rm ABC-DEF\) 가 있다. 변 \(\rm DE\) 의 중점 \(\rm M\) 에 대하여 선분 \(\rm BM\) 을 \(1:2\) 로 내분하는 점을 \(\rm P\) 라 하자. \(\overline{\rm CP}=l\) 일 때, \(10l^2\) 의 값을 구하시오. 정답 \(350\)
양의 실수 \(k\) 에 대하여 곡선 \(y=k \ln x\) 와 직선 \(y=x\) 가 접할 때, 곡선 \(y= k \ln x\), 직선 \(y=x\) 및 \(x\) 축으로 둘러싸인 부분의 넓이는 \(ae^2 -be\) 이다. \(100ab\) 의 값을 구하시오. (단, \(a\) 와 \(b\) 는 유리수이다.) 정답 \(50\)
그림과 같이 길이가 \(12\) 인 선분 \(\rm AB\) 를 지름으로 하는 반원의 호 \(\rm AB\) 위에 \(\angle \rm PAB=\theta \; \left ( 0 < \theta < \dfrac{\pi}{6} \right )\) 인 점 \(\rm P\) 가 있다. \(\angle \rm APQ=3\theta\) 가 되도록 선분 \(\rm AB\) 위의 점 \(\rm Q\) 를 잡을 때, 두 선분 \(\rm PQ, \; QB\) 와 호 \(\rm BP\) 로 둘러싸인 부부의 넓이를 \(S(\theta)\) 라 하자. \(\lim \limits_{\theta \to +0} \dfrac{S(\theta)}{\theta}\) 의 값을 구하시오. 정답 \(18\)
좌표평면에서 자연수 \(n\) 에 대하여 그림과 같이 곡선 \(y=x^2\) 과 직선 \(y=\sqrt{n}x\) 가 제1사분면에서 만나는 점을 \({\rm P}_n\) 이라고 하자. 점 \({\rm P}_n\) 을 지나고 직선 \(y=\sqrt{n}x\) 에 수직인 직선이 \(x\) 축, \(y\) 축과 만나는 점을 각각 \({\rm Q}_n {\rm R}_n\) 이라 하자. 삼각형 \(\rm OQ_{\it n}R_{\it n}\) 의 넓이를 \(S_n\) 이라 할 때, \(\sum \limits_{n=1}^{5} \dfrac{2S_n}{\sqrt{n}}\) 의 값은? (단, \(\rm O\) 는 원점이다.) ① \(80\) ② \(85\) ③ \(90\) ④ \(95\) ⑤ \(100\) 정답 ③