일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 적분과 통계
- 정적분
- 수만휘 교과서
- 함수의 그래프와 미분
- 접선의 방정식
- 수학2
- 수학질문
- 미분
- 수학1
- 확률
- 심화미적
- 수악중독
- 미적분과 통계기본
- 중복조합
- 수열의 극한
- 여러 가지 수열
- 함수의 극한
- 적분
- 경우의 수
- 함수의 연속
- 이정근
- 행렬과 그래프
- 수학질문답변
- 기하와 벡터
- 수능저격
- 로그함수의 그래프
- 도형과 무한등비급수
- 행렬
- 수열
- 이차곡선
- Today
- Total
목록함수의 그래프와 미분 (43)
수악중독
좌표평면 위에 원 $x^2 + y^2 = 9$ 와 직선 $y=4$ 가 있다. $t \ne -3, \; t \ne 3$ 인 실수 $t$ 에 대하여 직선 $y=4$ 위의 점 ${\rm P}(t, \; 4)$ 에서 원 $x^2 +y^2 = 9$ 에 그은 두 접선의 기울기의 곱을 $f(t)$ 라 할 때, 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. $f \left ( \sqrt{2} \right ) = -1$ㄴ. 열린 구간 $(-3, \; 3)$ 에서 $f''(t)
함수 $f(x)=- \dfrac{kx^3}{x^2+1}~(k>1)$ 에 대하여 곡선 $y=f(x)$ 와 곡선 $y=f^{-1}(x)$ 가 만나는 점의 $x$ 좌표 중 가장 작은 값을 $\alpha$, 가장 큰 값을 $\beta$ 라 하자. 함수 $y=f(x-2\beta)+2\alpha$ 의 역함수 $g(x)$ 에 대하여 $f'(\beta) = 2g'(\alpha)$ 일 때, 상수 $k$ 의 값은? ① $\dfrac{5+2\sqrt{3}}{7}$ ② $\dfrac{6+2\sqrt{2}}{7}$ ③ $\dfrac{4+2\sqrt{2}}{5}$ ④ $\dfrac{5+2\sqrt{2}}{5}$ ⑤ $\dfrac{6+2\sqrt{2}}{5}$ 정답 ②
최고차항의 계수가 $\dfrac{1}{2}$ 이고 최솟값이 $0$ 인 사차함수 $f(x)$ 와 함수 $g(x)=2 x^4 e^{-x}$ 에 대하여 합성함수 $h(x)=(f \circ g)(x)$ 가 다음 조건을 만족시킨다. (가) 방정식 $h(x)=0$ 의 서로 다른 실근의 개수는 $4$ 이다.(나) 함수 $h(x)$ 는 $x=0$ 에서 극소이다.(다) 방정식 $h(x)=8$ 의 서로 다른 실근의 개수는 $6$ 이다. $f'(5)$ 의 값을 구하시오. (단, $\lim \limits_{x \to \infty} g(x)=0$) 정답 $30$
실수 전체의 집합에서 이계도함수가 존재하는 함수 $f(x)$ 와 그 역함수 $g(x)$ 에 대하여 함수 $h(x)$ 를 $$h(x) = \displaystyle \int_x^{g(x)} f(t) \; dt$$ 라 하자. 두 함수 $f(x)$ 와 $g(x)$ 가 다음 조건을 만족시킨다. (가) 모든 실수 $x$ 에 대하여 $f'(x)>0$ 이고, $f''(2)
좌표평면에서 함수 $f(x)=(\ln x)^2- \ln x$ 에 대하여 원점과 곡선 $y=f(x)$ 위의 점 $(t, \; f(t))$ 를 이은 직선이 이 곡선과 만나는 점의 개수를 $g(t)$ 라 하자. 함수 $g(t)$ 가 $t=a_1$, $ t=a_2$, $t=a_3$, $t=a_4$, $t=a_5$ $(a_1 < a_2
함수 $f(x)=e^{-\frac{1}{2}x^2}$ 과 실수 $t$ 에 대하여 $$f(t)=f'(a)(t-2)$$ 를 만족시키는 실수 $a$ 의 개수를 $g(t)$ 라 하자. 함수 $g(t)$ 가 불연속인 점의 개수는? ① $1$ ② $2$ ③ $3$ ④ $4$ ⑤ $5$ 정답 ②
함수 $f(x)=x^3+3x^2$ 에 대하여 두 함수 $g(t), \; h(t)$ 를 다음과 같이 정의한다. (가) 임의의 실수 $t$ 에 대하여 닫힌 구간 $[t-2, \; t]$ 에서 함수 $f(x)$ 의 최댓값이 $g(t)$ 이다.(나) 임의의 실수 $t$ 에 대하여 닫힌 구간 $ [t, \; t+2]$ 에서 함수 $f(x)$ 의 최솟값이 $h(t)$ 이다. 함수 $g(t)$ 가 $t=\alpha$ 에서 미분불가능하고, 함수 $h(t)$ 가 $t=\beta$ 에서 미분불가능할 때, $\alpha + \beta$ 의 값은? ① $-3$ ② $-\dfrac{5}{2}$ ③ $-2$ ④ $-\dfrac{3}{2}$ ⑤ $-1$ 정답 ③
함수 $f(x)$ 는 최고차항의 계수가 $-1$ 인 사차함수이고 다음의 조건을 만족한다. (가) $f'(a)=f'(b)=\dfrac{f(b)-f(a)}{b-a}$(나) $a \le x_1 < x_2 \le b $ 인 임의의 $x_1, \; x_2$ 에 대하여 $f(x_1) \le f(x_2)$ 이다. (다) $b-a=4\sqrt{3}$ 이때, $f'(a)$ 의 최솟값을 구하시오. 정답 $64$
이차함수 $f(x)$ 에 대하여 실수 전체의 집합에서 정의된 함수 $$g(x)=\ln\{f(x)\}$$ 가 다음 조건을 만족시킨다. (가) 모든 실수 $x$ 에 대하여 $g(x) \ge \ln 2$ 이고, 어떤 실수 $x$ 에 대하여 $g(x) \le \ln 2$ 이다.(나) 방정식 $g'(x)=g' \left ( \dfrac{\sqrt{2}}{2} \right )$ 는 오직 한 개의 실근을 갖는다.(다) 조건 '어떤 실수 $x$ 에 대하여 $g'(x)=k$ 이다.' 가 참이 되도록 하는 실수 $k$ 의 범위는 $-\sqrt{2} \le k \le \sqrt{2}$ 이다. $g(0)$ 의 최댓값을 $M$ 이라고 할 때, $e^M$ 의 값을 구하시오. 정답 $10$
$k$ 가 양의 상수일 때, 함수 $f(x)=k(x-2)e^{-x}$ 과 실수 $m$ 에 대하여 집합 $S$ 를 $$S=\left \{t \; \big | \; f(t)-mt=0, \; t는 \; 양의 \; 실수\right \}$$ 라 하고, 집합 $S$ 의 원소의 개수를 $g(m)$ 이라 하자. 함수 $g(x)$ 는 $x=m_1$ 에서 불연속이고 함수 $f(x)g(x)$ 는 $x=m_1$ 에서 연속일 때, $f \left ( 1 + \sqrt{3} \right )$ 의 값은? ① $1+\sqrt{3}$ ② $2 \left (1 + \sqrt{3} \right )$ ③ $3 \left (1 + \sqrt{3} \right )$ ④ $-1 + \sqrt{3} $ ⑤ $2 \left (-1 + \sqrt{3..