일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 행렬
- 심화미적
- 정적분
- 여러 가지 수열
- 수악중독
- 기하와 벡터
- 경우의 수
- 이정근
- 수능저격
- 수학질문
- 수학2
- 행렬과 그래프
- 적분과 통계
- 함수의 극한
- 수학1
- 접선의 방정식
- 미적분과 통계기본
- 도형과 무한등비급수
- 수열의 극한
- 이차곡선
- 함수의 연속
- 미분
- 적분
- 수만휘 교과서
- 로그함수의 그래프
- 중복조합
- 수열
- 함수의 그래프와 미분
- 수학질문답변
- 확률
- Today
- Total
목록수악중독 (2132)
수악중독
양수 \(x\) 에 대하여 \(\log x\) 의 가수를 \(f(x)\) 라 하자. 다음 조건을 만족시키는 두 자연수 \(a, \;b\) 의 모든 순서쌍 \((a,\; b)\) 의 개수를 구하시오. (가) \(a\leq b\leq 20\) (나) \(\log b - \log a \leq f(a)-f(b)\) 정답 \(71\)
함수 \(f(x)=2|x-4|-4\) 에 대하여 부등식 \[\dfrac{x-3}{f(x)}\geq 1\] 을 만족시키는 모든 자연수 \(x\) 의 값의 합은? ① \(18\) ② \(21\) ③ \(24\) ④ \(27\) ⑤ \(30\) 정답 ③
그림과 같이 \(\overline{\rm A_1D_1}=2,\; \overline{\rm A_1B_1}=1\) 인 직사각형 \(\rm A_1B_1C_1D_1\) 에서 선분 \(\rm A_1D_1\) 의 중점을 \(\rm M_1\) 이라 하자. 중심이 \(\rm A_1\), 반지름의 길이가 \(\rm A_1B_1\) 이고 중심각의 크기가 \(\dfrac{\pi}{2}\) 인 부채꼴 \(\rm A_1B_1M_1\) 을 그리고, 부채꼴 \(\rm A_1B_1M_1\) 에 색칠하여 얻은 그림을 \(R_1\) 이라 하자. 그림 \(R_1\) 에서 부채꼴 \(\rm A_1B_1M_1\) 의 호 \(\rm B_1M_1\) 이 선분 \(\rm A_1C_1\) 과 만나는 점을 \(\rm A_2\) 라 하고, 중심이 \(..
두 이차정사각행렬 \(A, \;B\) 가 \[A^2=-A,\;\; A^2+B^2=A+E\] 를 만족시킬 때, 에서 옳은 것만을 있는 대로 고른 것은? (단, \(E\) 는 단위행렬이다.) ㄱ. \(A^3=A\) ㄴ. \(AB^2=B^2A\) ㄷ. \(B\) 의 역행렬이 존재한다. ① ㄴ ② ㄷ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
그림과 같이 두 초점 \(\rm F, \;F'\) 이 \(x\) 축 위에 있는 타원 \( \dfrac{x^2}{49}+\dfrac{y^2}{a}=1\) 위의 점 \(\rm P\) 가 \(\overline{\rm FP}=9\) 를 만족시킨다. 점 \(\rm F\) 에서 선분 \(\rm PF'\) 에 내린 수선의 발 \(\rm H\) 에 대하여 \(\overline{\rm FH}=6\sqrt{2}\) 일 때, 상수 \(a\) 의 값은? ① \(29\) ② \(30\) ③ \(31\) ④ \(32\) ⑤ \(33\) 정답 ②
양의 실수 전체의 집합에서 미분가능한 함수 \(f(x)\) 에 대하여 함수 \(g(x)\) 를 \[g(x)=f(x) \ln x^4\] 이라 하자. 곡선 \(y=f(x)\) 위의 점 \((e, \;-e)\) 에서의 접선과 곡선 \(y=g(x)\) 위의 점 \((e, \;-4e)\) 에서의 접선이 서로 수직일 때, \(100f'(e)\) 의 값을 구하시오. 정답 \(50\)
두 함수 \(f(x)=-x+2,\;\;g(x)=\dfrac{1}{2}(x-1)\) 에 대하여 무리방정식 \[\sqrt{g(x)}-\sqrt{g(x)-\{f(x)\}^2}=f(x)\] 의 모든 실근의 합을 \(a\) 라 하자. \(10a\) 의 값을 구하시오. 정답 \(35\)
좌표평면에서 포물선 \(C_1 : x^2=4y\) 의 초점을 \(\rm F_1\), 포물선 \(C_2 : y^2=8x\) 의 초점을 \(\rm F_2\) 라 하자. 점 \(\rm P\) 는 다음 조건을 만족시킨다. (가) 중심이 \(C_1\) 위에 있고, 점 \(\rm F_1\) 을 지나는 원과 중심이 \(C_2\) 위에 있고, 점 \(\rm F_2\) 를 지나는 원의 교점이다. (나) 제\(3\)사분면에 있는 점이다. 원점 \(\rm O\) 에 대하여 \(\overline{\rm OP}^2\) 의 최댓값을 구하시오. 정답 \(5\)
그림과 같이 사다리꼴 \(\rm ABCD\) 에서 변 \(\rm AD\) 와 변 \(\rm BC\) 가 평행하고 \(\angle \rm B=2\theta,\; \angle \rm C=3\theta, \; \overline{\rm BC}=2\sin \theta, \; \overline{\rm AD}=\sin \theta\) 이다. 사다리꼴 \(\rm ABCD\) 의 넓이를 \(S(\theta)\) 라 할 때, \(\lim \limits_{\theta \to +0} \dfrac{S(\theta)}{\theta ^3}=\dfrac{q}{p}\) 이다. \(p+q\) 의 값을 구하시오. \( \left ( 단, \; 0
실수 전체의 집합에서 미분가능한 함수 \(f(x)\) 가 다음 조건을 만족시킨다. (가) 모든 실수 \(x\) 에 대하여 \(1 \leq f'(x) \leq 3\) 이다. (나) 모든 정수 \(n\) 에 대하여 함수 \(y=f(x)\) 의 그래프는 점 \((4n, \;8n)\), 점 \((4n+1, \;8n+2)\), 점 \( (4n+2, \;8n+5)\), 점 \( (4n+3, \;8n+7)\) 을 모두 지난다. (다) 모든 정수 \(k\) 에 대하여 닫힌 구간 \([2k, \; 2k+1]\) 에서 함수 \(f(x)\) 의 그래프는 각각 이차함수의 그래프의 일부이다. \(\displaystyle \int_{3}^{6} f(x) dx=a\) 라 할 때, \(6a\) 의 값을 구하시오. 정답 \(167\)