일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 정적분
- 미분
- 여러 가지 수열
- 적분
- 함수의 그래프와 미분
- 중복조합
- 접선의 방정식
- 경우의 수
- 이차곡선
- 심화미적
- 기하와 벡터
- 도형과 무한등비급수
- 수학1
- 적분과 통계
- 수능저격
- 수만휘 교과서
- 이정근
- 수악중독
- 수학2
- 미적분과 통계기본
- 함수의 극한
- 함수의 연속
- 행렬과 그래프
- 행렬
- 로그함수의 그래프
- 확률
- 수학질문
- 수열
- 수학질문답변
- 수열의 극한
- Today
- Total
목록수악중독 (2132)
수악중독
그림과 같이 한 변의 길이가 \(a\) 인 정사각형 \(\rm OB_1C_1A_0\) 이 있다 삼각형 \(\rm OA_1D_1\) 이 \(\angle \rm D_1OA_1=30^{\rm o}\) 인 이등변삼각형이 되도록 변 \(\rm B_1C_1\), \(\rm A_0C_1\) 위에 각각 점 \(\rm A_1, \;D_1\) 을 잡고 변 \(\rm OA_1\) 의 길이를 \(l_1\) 이라 하자. 선분 \(\rm OA_1\) 을 한 변으로 하는 정사각형 \(\rm OB_2C_2A_1\) 에서 삼각형 \(\rm OA_2D_2\) 가 \(\angle \rm D_2OA_2=30^{\rm o}\) 인 이등변삼각형이 되도록 변 \(\rm B_2C_2\), \(\rm A_1C_2\) 위에 각각 점 \(\rm A_2..
좌표공간에서 구 \(S\;:\;(x-1)^2+(y-1)^2+(z-1)^2=4\) 위를 움직이는 점 \(\rm P\) 가 있다. 점 \(\rm P\) 에서 구 \(S\) 에 접하는 평면이 구 \(x^2+y^2+z^2=16\) 과 만나서 생기는 도형의 넓이의 최댓값은 \(\left ( a+b\sqrt{3} \right ) \pi\) 이다. \(a+b\) 의 값을 구하시오. (단, \(a, \;b\) 는 자연수이다.) 정답 \(13\) \(\therefore a+b=13\)
\(x\) 축을 교선으로 갖는 두 평면이 구 \((x-1)^2+(y-1)^2+(z-2)^2=4\) 위의 두 점 \(\rm A,\;B\) 에서 접한다. 구의 중심을 \(\rm C,\; \triangle CAB\) 의 넓이를 \(S\) 라 할 때, \(10S\) 의 값을 구하시오. 정답 \(16\) 위의 풀이를 보시면 아시겠지만 이 문제는 yz 평면에 정사영 시켜서 풀어도 됩니다. 즉, y축과 z축으로 이루어진 2차원 평면위에서 생각해도 삼각형 ABC 의 넓이에는 변화가 없음을 이용하는 것이지요. 이렇게 생각한다면 다음과 같은 풀이도 가능하게 됩니다.
그림과 같이 밑면의 반질므의 길이가 \(5\) 인 원기둥이 평면 \(\alpha\) 위에 놓여 있고, 원기둥의 내부에 중심이 점 \(\rm A\) 이고 반지름의 길이가 \(3\) 인 구 \(S_1\) 이 원기둥의 밑면과 옆면에 내접하며 놓여있다. 평면 \(\alpha\) 와 만나는 원기둥의 밑면의 중심을 \(\rm O\) 라 할 때, 중심이 \(\rm B\) 이고 반지름의 길이가 \(2\) 인 구 \(S_2\) 가 다음 조건을 만족시킨다. (가) 구 \(S_2\) 는 원기둥과 구 \(S_1\) 에 모두 접한다. (나) 두 점 \(\rm A, \;B\) 의 평면 \(\alpha\) 위로의 정사영이 각각 \(\rm A', \; B'\) 일 때, \(\angle \rm A'OB'=120^{\rm o}\) 이다..
다음 의 함수 중 \(x=0\) 미분 가능한 것을 모두 고른 것은? ㄱ. \(f\left( x \right) = \left\{ {\begin{array}{ll}x&{\left( {x \ge 0} \right)}\\{ - x}&{\left( {x < 0} \right)}\end{array}} \right.\) ㄴ. \(g\left( x \right) = \left\{ {\begin{array}{ll}{{{\left( {x + 1} \right)}^2}}&{\left( {x \ge 0} \right)}\\{2x + 1}&{\left( {x < 0} \right)}\end{array}} \right.\) ㄷ. \(h\left( x \right) = \left\{ {\begin{array}{ll}{{x^2} +..
곡선 \(y=x^2\) 위의 점 \((-2,\;4)\) 에서의 접선이 곡선 \(y=x^3+ax-2\) 에 접할 때, 상수 \(a\) 의 값은? ① \(-9\) ② \(-7\) ③ \(-5\) ④ \(-3\) ⑤ \(-1\) 정답 ②
곡선 \(y=2x^2+1\) 위의 점 \((-1,\;3)\) 에서의 접선이 곡선 \(y=2x^3-ax+3\) 에 접할 때, 상수 \(a\) 의 값을 구하시오. 정답 \(10\)
점 \((1,\;-1)\) 에서 곡선 \(y=x^2-x\) 에 그은 두 접선의 기울기의 합을 구하시오. 정답 \(2\)
점 \((0, \;-4)\) 에서 곡선 \(y=x^3-2\) 에 글은 접선이 \(x\) 축과 만나는 점의 좌표를 \((a,\;0)\) 이라 할 때, \(a\) 의 값은? ① \(\dfrac{7}{6}\) ② \(\dfrac{4}{3}\) ③ \(\dfrac{3}{2}\) ④ \(\dfrac{5}{3}\) ⑤ \(\dfrac{11}{6}\) 정답 ②