일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- 심화미적
- 도형과 무한등비급수
- 수열의 극한
- 수만휘 교과서
- 행렬
- 수열
- 여러 가지 수열
- 함수의 연속
- 수학질문
- 적분과 통계
- 이차곡선
- 수학2
- 미적분과 통계기본
- 수능저격
- 행렬과 그래프
- 수악중독
- 기하와 벡터
- 수학1
- 미분
- 이정근
- 적분
- 로그함수의 그래프
- 확률
- 수학질문답변
- 정적분
- 함수의 그래프와 미분
- 함수의 극한
- 경우의 수
- 중복조합
- 접선의 방정식
- Today
- Total
목록(9차) 기하와 벡터 문제 풀이/벡터 (149)
수악중독
그림과 같이 한 변의 길이가 $6$ 인 정사면체 $\rm ABCD$ 가 있다. 선분 $\rm BC$ 의 중점을 $\rm M$, 선분 $\rm DM$ 을 $4:1$ 로 외분하는 점을 $\rm E$ 라 하자. 정사면체 $\rm ABCD$ 의 내부 또는 경계 위의 점 $\rm P$ 와 선분 $\rm AE$ 위의 점 $\rm Q$ 에 대하여 $\overrightarrow{\rm AQ}\cdot \overrightarrow{\rm QP}=0$ 이다. $\overrightarrow{\rm AD} \cdot \overrightarrow{\rm BP}$ 의 최댓값이 $12$ 일 때, $\overrightarrow{\rm CE} \cdot \overrightarrow{\rm QB}$ 의 값을 구하시오. 정답 $9$
시각 $t \; (0 \le t \le \pi)$ 에서 미분가능한 함수 $f(t)$ 로 정의된 좌표평면 위를 움직이는 점 $\rm P$ 의 위치 $(x, \; y)$ 가 $$\left \{ \begin{array}{l} x=\cos^3t \\ y=f(t) \end{array}\right .$$ 이다. 시각 $t$ 에 대해 점 $\rm P$ 가 점 $(1, \; f(0))$ 으로부터 움직인 거리 $s$ 는 $s=\dfrac{3}{2} \left ( 1 - \sqrt[3]{x^2} \right )$ 을 만족하고 $f \left ( \dfrac{\pi}{2} \right )=1$ 일 때 $\displaystyle \int_{-1}^1 f(t)\;dx$ 의 최댓값을 $M$, 최솟값을 $m$ 이라 하자. $M+m..
그림과 같이 평면 $\alpha \; : \; z=-2$ 와 중심이 ${\rm O}(0, \; 0, \; 0)$ 이고 반지름의 길이가 $4$ 인 구 $S$ 가 있다. 평면 $\alpha$ 에 접하는 두 구 $S_1, \; S_2$ 가 다음 조건을 만족시킨다. (가) $S_1$ 의 반지름의 길이는 $3$ 이고, $S_2$ 의 반지름은 $S_1$ 의 반지름보다 크다.(나) $S_1, \; S_2$ 는 모두 $S$ 에 외접한다.(다) $S_1$ 은 $S_2$ 와 외접한다. $S_1, \; S_2$ 의 중심을 각각 $\rm O_1, \; O_2$ 라 할 때, 직선 $\rm O_1O_2$ 가 평면 $\alpha$ 와 이루는 예각 $\theta$ 에 대하여 $\sin \theta = \dfrac{1}{7}$ 이다...
구 $S\; : \; x^2+y^2+z^2=24$ 와 평면 $\alpha \; : \; x+2y-2z=12$ 가 만나서 생기는 원을 $C_1$ 이라 할 때, 원점 $\rm O$ 를 포함하는 평면 $\beta$ 가 구 $S$ 와 만나서 생기는 원 $C_2$ 가 원 $C_1$ 과 오직 한 점 $\rm A$ 에서 만난다고 하자. 원 $C_1$ 위를 움직이는 점 $\rm P$ 의 평면 $\beta$ 위로의 정사영을 $\rm H$ 라 할 때, $\left | \overrightarrow{\rm OA} \right |^2 - \left | \overrightarrow{\rm OH} \right |^2 + 2 \overrightarrow{\rm OP} \cdot \overrightarrow{\rm AH}$ 의 최댓값..
좌표공간 위에 두 구 $$S_1 \; : \; x^2+y^2+(z+2)^2=4, \;\; S_2\; :\; x^2+y^2+(z-1)^2=1$$에 대하여 원점을 지나지 않는 두 평면 $\alpha, \; \beta$ 가 $S_1, \; S_2$ 와 동시에 접하고, 평면 $\alpha$ 와 구 $S_1$ 의 교점을 $\rm P$ 라 할 때, 점 $\rm P$ 는 $yz$ 평면 위에 있고 평면 $\beta$ 는 직선 $\rm OP$ 와 평행하다.평면 $\beta$ 와 $yz$ 평면의 교선을 $l$ 이라 할 때, 직선 $l$ 이 두 구 $S_1, \; S_2$ 와 동시에 접하는 임의의 평면과 이루는 각의 크기를 $\theta$ 라 하자. $\sin \theta$ 의 최댓값이 $\dfrac{q}{p}\sqrt{3..
그림과 같이 중심이 같고 반지름의 길이가 $1, \; 3$ 인 두 원을 각각 밑면으로 하는 두 원기둥의 사이에 반지름의 길이가 $1$ 인 구 $12$ 개가 서로 외접하면서 들어 있다. 아래쪽에 있는 $6$ 개의 구 중에서 서로 외접하는 두 구를 $S_1, \; S_2$ 라고 하고 위쪽에 있는 구 중에서 구 $S_1 \; S_2$ 에 모두 접하는 구를 $S_3$, 두 구 $S_2, \; S_3$ 에 모두 접하는 $S_1$ 이 아닌 구를 $S_4$ 라고 하자. 네 구 $S_1, \; S_2, \; S_3, \; S_4$ 의 중심을 각각 $\rm O_1, \; O_2, \; O_3, \; O_4$ 라고 할 때, 평면 $\rm O_1O_2O_3$ 와 평면 $\rm O_2O_3O_4$ 가 이루는 예각의 크기를 $..
그림과 같이 반지름의 길이가 $1$ 인 $4$ 개의 구 $S_1, \; S_2, \; S_3, \; S_4$ 가 서로 외접하며 놓여 있다. $4$ 개의 구 $S_1, \; S_2, \; S_3, \; S_4$ 위를 움직이는 점 $\rm P_1, \; P_2, \; P_3, \; P_4$ 에 대하여 $\left | 4 \overrightarrow{\rm P_1P_2} + \overrightarrow{\rm P_1P_3} + \overrightarrow{\rm P_1P_4} \right |$ 의 최댓값이 $a+b\sqrt{3}$ 일 때, $a+b$ 의 값을 구하시오. (단, $a, \; b$ 는 정수이다.) 정답 $18$
좌표평면에서 중심이 $\rm O$ 이고 반지름의 길이가 $1$ 인 원 위의 한 점을 $\rm A$, 중심이 $\rm O$ 이고 반지름의 길이가 $3$ 인 원 위의 한 점을 $\rm B$ 라 할 때, 점 $\rm P$ 가 다음 조건을 만족시킨다. (가) $\overrightarrow{\rm OB} \cdot \overrightarrow{\rm OP} = 3 \overrightarrow{\rm OA} \cdot \overrightarrow{\rm OP}$ (나) $\left | \overrightarrow{\rm PA} \right |^2 + \left | \overrightarrow{\rm PB} \right |^2 = 20$ $\overrightarrow{\rm PA} \cdot \overrightarr..
좌표평면에서 세 직선 $l, \; m, \; n$ 위의 임의의 점을 각각 $\rm P, \; Q, \; R$ 이라 하자. 원점 $\rm O$ 를 시점으로 하는 세 점 $\rm P, \; Q, \; R$ 의 위치벡터를 각각 $\overrightarrow{p}, \; \overrightarrow{q},\; \overrightarrow{r}$ 라 할 때, 원점 $\rm O$ 를 시점으로 하는 두 위치벡터 $\overrightarrow{a}, \; \overrightarrow{b}$ 에 대하여 $$\begin{aligned} \overrightarrow{p} &= t \overrightarrow{a} + (1-t) \overrightarrow{b} \;\; (t는 \; 실수) \\ \overrightarrow{..
그림과 같이 한 변의 길이가 $2$ 인 정삼각형 $\rm ABC$ 를 밑면으로 하고 $\overline{\rm OA}= \overline{\rm OB}=\overline{\rm OC}=\sqrt{3}$ 인 정삼각뿔 $\rm O-ABC$ 가 있다. 정삼각형 $\rm ABC$ 에 내접하는 원을 밑면으로 하는 반구와 평면 $\rm OAB$ 가 만나서 생기는 도형을 $C$ 라 하고, 정삼각형 $\rm ABC$ 에 내접하는 원의 중심을 $\rm H$ 라 하자. 도형 $C$ 의 경계 또는 내부의 점 $\rm P$ 와 선분 $\rm OC$ 를 $2:1$ 로 내분하는 점 $\rm Q$ 에 대하여 $\overrightarrow{\rm HP} \cdot \overrightarrow{\rm QH}$ 의 최솟값은 $\dfra..