일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- 함수의 그래프와 미분
- 적분과 통계
- 함수의 연속
- 수열
- 경우의 수
- 접선의 방정식
- 수학1
- 기하와 벡터
- 수학질문
- 행렬
- 수학2
- 행렬과 그래프
- 미분
- 확률
- 함수의 극한
- 수악중독
- 심화미적
- 이차곡선
- 적분
- 여러 가지 수열
- 정적분
- 수만휘 교과서
- 중복조합
- 도형과 무한등비급수
- 수능저격
- 미적분과 통계기본
- 수열의 극한
- 이정근
- 수학질문답변
- 로그함수의 그래프
- Today
- Total
목록2022/12 (41)
수악중독
삼차방정식 $x^3+2x^2-3x+4=0$ 의 세 근을 $\alpha, \; \beta, \; \gamma$ 라 할 때, $(3+\alpha)(3+\beta)(3+\gamma)$ 의 값은? ① $-5$ ② $-4$ ③ $-3$ ④ $-2$ ⑤ $-1$ 더보기 정답 ②
$2018^3 - 27$ 을 $2018 \times 2021 + 9$ 로 나눈 몫은? ① $2015$ ② $2025$ ③ $2035$ ④ $2045$ ⑤ $2055$ 더보기 정답 ①
두 실수 $a, \; b$ 에 대하여 복소수 $z=a+2bi$ 가 $z^2 + \left (\overline{z} \right )^2 = 0$ 을 만족시킬 때, $6a+12b^2+11$ 의 최솟값은? (단, $i=\sqrt{-1}$ 이고 $\overline{z}$ 는 $z$ 의 켤레복소수이다.) ① $6$ ② $7$ ③ $8$ ④ $9$ ⑤ $10$ 더보기 정답 ③
자연수 $n$ 에 대하여 그림과 같이 함수 $y=x^2$ 의 그래프를 $x$ 축의 방향으로 $n$ 만큼, $y$ 축의 방향으로 $3$ 만큼 평행이동한 그래프를 나타내는 함수를 $y=f(x)$ 라 하자. 함수 $f(x)$ 에 대하여 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. 함수 $f(x)$ 의 최솟값은 $3$ 이다. ㄴ. $n=3$ 일 때, 방정식 $f(x)=10$ 의 서로 다른 두 실근의 합은 $6$ 이다. ㄷ. 함수 $y=f(x)$ 의 그래프는 직선 $y=x-\dfrac{3n-4}{2}$ 와 만나지 않는다. ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 더보기 정답 ⑤
그림과 같이 직선 위에 $\overline{\rm AB}=6$ 인 두 점 $\rm A, \; B$ 가 있다. 선분 $\rm AB$ 위의 점 $\rm C$ 에 대하여 선분 $\rm AC$ 의 중점을 $\rm P_1$, 선분 $\rm CB$ 의 중점을 $\rm P_2$ 라 하고 $\overline{\rm P_1C}=a, \; \overline{\rm CP_2}=b$ 라 하자. 점 $\rm P_1$ 을 중심으로 하고 반지름의 길이가 $a+\dfrac{1}{2}$ 인 반원 $O_1$, 점 $\rm P_2$ 를 중심으로 하고 반지름의 길이가 $b+\dfrac{1}{2}$ 인 반원 $O_2$ 를 각각 그린 후, 선분 $\rm P_1P_2$ 를 지름으로 하는 반원을 그린다. 두 반원 $O_1$ 과 $O_2$ 의 교점..
다음은 $x$ 에 대한 삼차방정식 $$2x^3-5x^2+(k+3)x-k=0$$ 의 서로 다른 세 실근이 직각삼각형의 세 변의 길이일 때, 상수 $k$ 의 값을 구하는 과정의 일부이다. 삼차방정식 $2x^3-5x^2+(k+3)x-k=-$ 에서 $$(x-1) \left ( \boxed{ (가) } +k \right ) = 0$$ 이므로 삼차방정식 $2x^3-5x^2+(k+3)x-k=0$ 의 서로 다른 세 실근은 $1$ 과 이차방정식 $\boxed{ (가) } +k=0$ 의 두 근이다. 이차방정식 $\boxed{ (가) }+k=0$ 의 두 근을 $\alpha, \; \beta \; (\alpha > \beta)$ 라 하자. $1, \; \alpha, \; \beta$ 가 직각삼각형의 세 변의 길이가 되는 경우..
모든 실수 $x$ 에 대하여 두 이차다항식 $P(x), \; Q(x)$ 가 다음 조건을 만족시킨다. (가) $P(x)+Q(x)=4$ (나) $\{P(x)\}^3 + \{Q(x)\}^3 = 12x^4+24x^3+12x^2+16$ $P(x)$ 의 최고차항의 계수가 음수일 때, $P(2)+Q(3)$ 의 값은? ① $6$ ② $7$ ③ $8$ ④ $9$ ⑤ $10$ 더보기 정답 ⑤
$x$ 에 대한 다항식 $x^4+ax+b$ 가 $(x-2)^2$으로 나누어떨어질 때, 몫을 $Q(x)$ 라 하자. 두 상수 $a, \; b$ 에 대하여 $a+b+Q(2)$ 의 값을 구하시오. 더보기 정답 $40$
이차함수 $f(x)=x^2+ax-(b-7)^2$ 이 다음 조건을 만족시킨다. (가) $x=-1$ 에서 최솟값을 가진다. (나) 이차함수 $y=f(x)$ 의 그래프와 직선 $y=cx$ 가 한 점에서만 만난다. 세 상수 $a, \; b, \; c$ 에 대하여 $a+b+c$ 의 값을 구하시오. 더보기 정답 $11$