일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 미분
- 로그함수의 그래프
- 접선의 방정식
- 함수의 연속
- 수열
- 수학질문답변
- 행렬
- 행렬과 그래프
- 미적분과 통계기본
- 수열의 극한
- 적분과 통계
- 수능저격
- 함수의 그래프와 미분
- 여러 가지 수열
- 경우의 수
- 수학질문
- 함수의 극한
- 수만휘 교과서
- 심화미적
- 이차곡선
- 확률
- 도형과 무한등비급수
- 이정근
- 정적분
- 수악중독
- 적분
- 중복조합
- 기하와 벡터
- 수학1
- 수학2
- Today
- Total
목록이면각의 크기 (26)
수악중독
좌표공간에 구 $S : x^2+y^2+z^2=50$ 과 점 ${\rm P}(0, \; 5, \; 5)$ 가 있다. 다음 조건을 만족시키는 모든 원 $C$ 에 대하여 $C$ 의 $xy$ 평면 위로의 정사영의 넓이의 최댓값을 $\dfrac{q}{p} \pi$ 라 하자. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.) (가) 원 $C$ 는 점 $\rm P$ 를 지나는 평면과 구 $S$ 가 만나서 생긴다.(나) 원 $C$ 의 반지름의 길이는 $1$ 이다. 정답 $9$
좌표공간에서 평면 $\alpha \; : \; \sqrt{3}x + \sqrt{3}y + \sqrt{2}z=6 \sqrt{6}$ 위의 두 점 $\rm P, \; Q$ 와 원점 $\rm O$ 에 대하여 삼각형 $\rm OPQ$ 는 한 변의 길이가 $4\sqrt{3}$ 인 정삼각형이다. 점 $\rm P$ 가 $xy$ 평면과 평면 $\alpha$ 가 만나서 생기는 교선 위에 있을 때, 삼각형 $\rm OPQ$ 의 $xy$ 평면 위로의 정사영의 넓이는? (단, 점 $\rm Q$ 는 $xy$ 평면 위에 있지 않다.) ① $\dfrac{11\sqrt{3}}{7}$ ② $\dfrac{12\sqrt{3}}{7}$ ③ $\dfrac{13\sqrt{3}}{7}$ ④ $2\sqrt{3}$ ⑤ $\dfrac{15\sqrt{3..
그림과 같이 평면 $\alpha \; : \; z=-2$ 와 중심이 ${\rm O}(0, \; 0, \; 0)$ 이고 반지름의 길이가 $4$ 인 구 $S$ 가 있다. 평면 $\alpha$ 에 접하는 두 구 $S_1, \; S_2$ 가 다음 조건을 만족시킨다. (가) $S_1$ 의 반지름의 길이는 $3$ 이고, $S_2$ 의 반지름은 $S_1$ 의 반지름보다 크다.(나) $S_1, \; S_2$ 는 모두 $S$ 에 외접한다.(다) $S_1$ 은 $S_2$ 와 외접한다. $S_1, \; S_2$ 의 중심을 각각 $\rm O_1, \; O_2$ 라 할 때, 직선 $\rm O_1O_2$ 가 평면 $\alpha$ 와 이루는 예각 $\theta$ 에 대하여 $\sin \theta = \dfrac{1}{7}$ 이다...
그림과 같이 원 $C_1 \; : \; x^2+y^2=9, \; z=0$ 와 $xy$ 평면 위의 직선 $l$ 이 점 $ \rm P$ 에서 접하고, 점 $(0,\; 0,\; 3)$ 을 중심으로 하는 원 $C_2$ 의 $xy$ 평면 위로의 정사영은 단축의 길이가 $2$ 이고 장축의 길이가 $2\sqrt{2}$ 인 타원이다. 원 $C_2$ 위의 점 중 $xy$ 평면까지의 거리가 최대인 점을 $\rm Q$, 원 $C_1$ 위의 점 중 $\rm Q$ 와의 거리가 최소인 점을 $\rm R$ 이라 할 때, 두 점 $\rm Q, \; R$ 을 지나는 평면 중 원 $C_1$ 와 오직 한점에서 만나는 평면을 $\alpha$ 라 하자. 평면 $\alpha$ 와 직선 $l$ 의 교점을 $\rm S$ 라 할 때, 점 $\rm ..
그림과 같이 중심이 같고 반지름의 길이가 $1, \; 3$ 인 두 원을 각각 밑면으로 하는 두 원기둥의 사이에 반지름의 길이가 $1$ 인 구 $12$ 개가 서로 외접하면서 들어 있다. 아래쪽에 있는 $6$ 개의 구 중에서 서로 외접하는 두 구를 $S_1, \; S_2$ 라고 하고 위쪽에 있는 구 중에서 구 $S_1 \; S_2$ 에 모두 접하는 구를 $S_3$, 두 구 $S_2, \; S_3$ 에 모두 접하는 $S_1$ 이 아닌 구를 $S_4$ 라고 하자. 네 구 $S_1, \; S_2, \; S_3, \; S_4$ 의 중심을 각각 $\rm O_1, \; O_2, \; O_3, \; O_4$ 라고 할 때, 평면 $\rm O_1O_2O_3$ 와 평면 $\rm O_2O_3O_4$ 가 이루는 예각의 크기를 $..
그림과 같이 한 변의 길이가 $2$ 인 정팔면체 $\rm ABCDEF$ 가 있다. 두 삼각형 $\rm ABC$, $\rm CBF$ 의 평면 $\rm BEF$ 위로의 정사영의 넓이를 각각 $S_1, \; S_2$ 라 할 때, $S_1 + S_2$ 의 값은? ① $\dfrac{2\sqrt{3}}{3}$ ② $\sqrt{3}$ ③ $\dfrac{4\sqrt{3}}{3}$ ④ $\dfrac{5\sqrt{3}}{3}$ ⑤ $2\sqrt{3}$ 정답 ①
좌표공간에서 한 변의 길이가 $2$ 인 정삼각형 $\rm ABC$ 가 다음 조건을 만족시킨다. (가) 두 점 $\rm A, \; B$ 는 평면 $x+y-z=1$ 위에 있고, 직선 $\rm AB$ 는 $yz$ 평면과 평행하다.(나) 평면 $\rm ABC$ 는 평면 $x+y-z=1$ 과 수직이다. 삼각형 $\rm ABC$ 의 평면 $2x+y+z=0$ 위로의 정사영의 넓이를 $S$ 라 할 때, $60 \times S^2$ 의 값을 구하시오. 정답 $80$
그림과 같이 직선 $l$ 을 교선으로 하고 이루는 각의 크기가 $\dfrac{\pi}{4}$ 인 두 평면 $\alpha$ 와 $\beta$ 가 있고, 평면 $\alpha$ 위의 점 $\rm A$ 와 평면 $\beta$ 위의 점 $\rm B$ 가 있다. 두 점 $\rm A, \; B$ 에서 직선 $l$ 에 내린 수선의 발을 각각 $\rm C, \; D$ 라 하자. $\overline{\rm AB}=2, \;\; \overline{\rm AD}=\sqrt{3}$ 이고 직선 $\rm AB$ 와 평면 $\beta$ 가 이루는 각의 크기가 $\dfrac{\pi}{6}$ 일 때, 사면체 $\rm ABCD$ 의 부피는 $a+ b \sqrt{2}$ 이다. $36(a+b)$ 의 값을 구하시오. 정답 $12$
그림과 같이 반지름의 길이가 $2$ 인 구 $S$와 서로 다른 두 직선 $l, \;m$ 이 있다. 구 $S$ 와 직선 $l$ 이 만나는 서로 다른 두 점을 각각 $\rm A, \; B,$ 구 $S$ 와 직선 $m$이 만나는 서로 다른 두 점을 각각 $\rm P, \;Q$ 라 하자. 삼각형 $\rm APQ$ 는 한 변의 길이가 $2\sqrt{3}$인 정삼각형이고 $\overline{\rm AB}=2\sqrt{2}, \; \angle {\rm ABQ}=\dfrac{\pi}{2}$ 일 때, 평면 $\rm APB$ 와 평면 $\rm APQ$ 가 이루는 각의 크기 $\theta$ 에 대하여 $100 \cos^2 \theta$ 의 값을 구하시오. 정답 $60$ 보충설명
한 모서리의 길이가 \(4\) 인 정사면체 \(\rm ABCD\) 에서 선분 \(\rm AD\) 를 \(1:3\) 으로 내분하는 점을 \(\rm P\), \(3:1\) 로 내분하는 점을 \(\rm Q\) 라 하자. 두 평면 \(\rm PBC\) 와 \(\rm QBC\) 가 이루는 예각의 크기를 \(\theta\) 라 할 때, \(\cos \theta = \dfrac{q}{p}\) 이다. \(p+q\) 의 값을 구하시오. (단, \(p\) 와 \(q\) 는 서로소인 자연수이다.) 정답 \(16\)