일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 미적분과 통계기본
- 접선의 방정식
- 수만휘 교과서
- 수능저격
- 수학질문
- 행렬
- 수학2
- 로그함수의 그래프
- 이차곡선
- 적분과 통계
- 확률
- 이정근
- 수열의 극한
- 기하와 벡터
- 수학질문답변
- 함수의 그래프와 미분
- 함수의 극한
- 도형과 무한등비급수
- 함수의 연속
- 심화미적
- 여러 가지 수열
- 정적분
- 적분
- 미분
- 수학1
- 수열
- 경우의 수
- 중복조합
- 수악중독
- 행렬과 그래프
- Today
- Total
목록미적분 - 문제풀이/미분법 (122)
수악중독
그림과 같이 반지름의 길이가 $5$ 인 원에 내접하고, $\overline{\rm AB}=\overline{\rm AC}$ 인삼각형 $\rm ABC$ 가 있다. $\angle {\rm BAC}=\theta$ 라 하고 점 $ \rm B$ 를 지나고 직선 $\rm ABC$ 에 수직인 직선이 원과 만나는 점 중 $\rm B$ 가 아닌 점을 $\rm D$, 직선 $\rm BD$ 와 직선 $\rm AC$ 가 만나는 점을 $\rm E$ 라 하자. 삼각형 $\rm ABC$ 의 넓이를 $f(\theta)$, 삼각형 $\rm CDE$ 의 넓이를 $g(\theta)$ 라 할 때, $\lim \limits_{\theta \to 0+} \dfrac{g(\theta)}{\theta ^2 \times f(\theta)}$ 의 값..
함수 $f(x)=x^3-x$ 와 실수 전체의 집합에서 미분가능한 역함수가 존재하는 삼차함수 $g(x)=ax^3+x^2+bx+1$ 이 있다. 함수 $g(x)$ 의 역함수 $g^{-1}(x)$ 에 대하여 함수 $h(x)$ 를 $$h(x)= \begin{cases} \left ( f \circ g^{-1} \right )(x) & (x1) \\[10pt] \dfrac{1}{\pi} \sin \pi x & (0 \le x \le 1) \end{cases}$$이라 하자. 함수 $h(x)$ 가 실수 전체의 집합에서 미분가능할 때, $g(a+b)$ 의 값을 구하시오. (단, $a, \; b$ 는 상수이다.) 더보기 정답 $15$
그림과 같이 길이가 $2$ 인 선분 $\rm AB$ 를 지름으로 하는 반원의 호 $\rm AB$ 위에 점 $\rm P$ 가 있다. 선분 $\rm AB$ 의 중점을 $\rm O$ 라 할 때, 점 $\rm B$ 를 지나고 선분 $\rm AB$ 에 수직인 직선이 직선 $\rm OP$ 와 만나는 점을 $\rm Q$ 라 하고, $\angle \rm OQB$ 의 이등분선이 직선 $\rm AP$ 와 만나는 점을 $\rm R$ 이라 하자. $\angle \rm OAP=\theta$ 일 때, 삼각형 $\rm OAP$ 의 넓이를 $f(\theta)$ , 삼각형 $\rm PQR$ 의 넓이를 $g(\theta)$ 라 하자. $\lim \limits_{\theta \to 0+} \dfrac{g(\theta)}{\theta^4 ..
$t>2e$ 인 실수 $t$ 에 대하여 함수 $f(x)= t (\ln x)^2 - x^2$ 이 $x=k$ 에서 극대일 때, 실수 $k$ 의 값을 $g(t)$ 라 하면 $g(t)$ 는 미분가능한 함수이다. $g(\alpha)=e^2$ 인 실수 $\alpha$ 에 대하여 $\alpha \times \{ g'(\alpha)\}^2=\dfrac{q}{p}$ 일 때, $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.) 더보기 정답 $17$
$t> \dfrac{1}{2} \ln 2$ 인 실수 $t$ 에 대하여 곡선 $y= \ln \left ( 1+ e^{2x}-e^{-2t} \right )$ 과 직선 $y=x+t$ 가 만나는 서로 다른 두 점 사이의 거리를 $f(t)$ 라 할 때, $f'(\ln 2)= \dfrac{q}{p} \sqrt{2}$ 이다. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.) 더보기 정답 $11$
그림과 같이 곡선 $y=x \sin x$ 위의 점 $ {\rm P}(t, \; t\sin t)\;\;(0
그림과 같이 $\angle{\rm BAC} = \dfrac{2}{3}\pi$ 이고 $\overline{\rm AB} > \overline{\rm AC}$ 인 삼각형 $\rm ABC$ 가 있다. $\overline{\rm BD}=\overline{\rm CD}$ 인 선분 $\rm AB$ 위의 점 $\rm D$ 에 대하여 $\angle{\rm CBD}=\alpha, \; \angle{\rm ACD}=\beta$ 라 하자. $\cos ^2 \alpha = \dfrac{7+\sqrt{21}}{14}$ 일 때, $54 \sqrt{3} \times \tan \beta$ 의 값을 구하시오. 더보기 정답 $18$
두 함수 $f(x)=x^2-ax+b \; (a>0), \; g(x) = x^2 e^{-\frac{x}{2}} $ 에 대하여 상수 $k$ 와 함수 $h(x)=(f \circ g)(x)$ 가 다음 조건을 만족시킨다. (가) $h(0) < h(4)$ (나) 방정식 $|h(x)|=k$ 의 서로 다른 실근의 개수는 $7$ 이고, 그 중 가장 큰 실근을 $\alpha$ 라 할 때 함수 $h(x)$ 는 $x=\alpha$ 에서 극소이다. $f(1)=-\dfrac{7}{32}$ 일 때, 두 상수 $a, \; b$ 에 대하여 $a+16b$ 의 값을 구하시오. (단, $\dfrac{5}{2} < e
두 상수 $a, \; b\; (a
그림과 같이 한 변의 길이가 $1$ 인 마름모 $\rm ABCD$ 가 있다. $\angle \rm ABD$ 의 이등분선이 두 선분 $\rm AC, \; AD$ 와 만나는 점을 각각 $\rm E, \; F$ 라 하자. $\angle \rm ABC = \theta$ 라 하고 삼각형 $\rm AEF$ 의 넓이를 $S(\theta)$ 라 할 때, $\lim \limits_{\theta \to 0+} \dfrac{S(\theta)}{\theta}$ 의 값은? $\left (단, \; 0< \theta < \dfrac{\pi}{2} \right )$ ① $\dfrac{1}{24}$ ② $\dfrac{1}{20}$ ③ $\dfrac{1}{16}$ ④ $\dfrac{1}{12}$ ⑤ $\dfrac{1}{8}$ 더보기 ..