일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 중복조합
- 이차곡선
- 적분과 통계
- 행렬과 그래프
- 적분
- 기하와 벡터
- 함수의 그래프와 미분
- 접선의 방정식
- 도형과 무한등비급수
- 수악중독
- 행렬
- 경우의 수
- 심화미적
- 수학2
- 확률
- 수열
- 수능저격
- 여러 가지 수열
- 수학질문
- 함수의 연속
- 이정근
- 수열의 극한
- 수학1
- 로그함수의 그래프
- 미분
- 수만휘 교과서
- 수학질문답변
- 미적분과 통계기본
- 함수의 극한
- 정적분
- Today
- Total
목록(9차) 미적분 II 문제풀이/미분 (157)
수악중독
\(x>0\) 일 때, 평균값의 정리를 이용하여 다음 부등식을 만족시키는 \(a, \;b\) 의 값을 구하여라. \[ a
함수 \(f(x)=4x \ln 2x \;\;(x>0)\) 가 있다. \(x_1 +x_2 =2\) 를 만족하는 임의의 두 양수 \(x_1 , \; x_2\) 에 대하여 \(f(2x_2 ) + f(2x_2 )\) 의 최솟값은 \(a\ln 4\) 이다. 이때, 상수 \(a\) 의 값을 구하시오. (단, 로그는 자연로그이다.) 정답 16
시계에서 분을 나타내는 긴 바늘과 시간을 나타내는 짧은 바늘이 이루는 각의 크기를 \(\theta\) 라 하면 시각 \(t\) 에 대한 \(\theta\) 의 변화율은 \(\dfrac{11}{6} \pi\) (라디안/시)이다. 긴 바늘과 짧은 바늘의 길이가 각각 \(4 \rm cm,\;\; 3 cm\) 인 시계가 \(9\) 시를 지나는 순간 긴 바늘과 짧은 바늘의 양 끝점이 멀어지는 속도는? (단, 단위는 라디안/시) ① \(\dfrac{22}{5}\pi\) ② \(\dfrac{23}{5}\pi\) ③ \(\dfrac{24}{5}\pi\) ④ \(5 \pi\) ⑤ \(\dfrac{26}{5}\pi\) 정답 ①
오른쪽 그림과 같이 \(x\) 축과 곡선 \(y=e^{-x^2} \) 에 동시에 접하고 있는 직사각형 \(\rm ABCD\) 가 있다. 이때, 직사각형 \(\rm ABCD\) 의 넓이의 최댓값은? ① \(\dfrac{\sqrt{2e}}{e}\) ② \(\dfrac{\sqrt{2e}}{2}\) ③ \(\sqrt{e}\) ④ \(e\) ⑤ \(\sqrt{2}e\) 정답 ①
곡선 \(y=e^x\) 위의 점 \(\rm P\) 와 원 \((x-1)^2 +y^2 =1\) 위의 점 \(\rm Q\) 를 연결하는 선분 \(\rm PQ\) 의 길이의 최솟값은? ① \(\sqrt{2}-2\) ② \(\sqrt{2}-1\) ③ \(\sqrt{2}\) ④ \(\sqrt{2}+1\) ⑤ \(\sqrt{2}+2\) 정답 ②
함수 \(f(x)=\cos ^2 x\) 위의 두 점 \((a,\;f(a)),\;\; (b,\;f(b))\) 에서의 접선이 서로 수직으로 만날 때, \(\cos (a-b)\) 의 값은? \(\left (단, \;0