일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수만휘 교과서
- 적분
- 함수의 연속
- 여러 가지 수열
- 수학2
- 경우의 수
- 수악중독
- 함수의 극한
- 행렬과 그래프
- 수학1
- 기하와 벡터
- 정적분
- 중복조합
- 확률
- 접선의 방정식
- 수열
- 수학질문답변
- 수능저격
- 함수의 그래프와 미분
- 적분과 통계
- 도형과 무한등비급수
- 심화미적
- 이정근
- 이차곡선
- 미적분과 통계기본
- 미분
- 수열의 극한
- 행렬
- 수학질문
- 로그함수의 그래프
- Today
- Total
목록전체 글 (5851)
수악중독
쌍곡선 \({\dfrac{x^2}{4}}-{\dfrac{y^2}{5}}=1\) 의 두 초점을 \(\rm F,\;F'\) 이라 하자. 쌍곡선 위의 한 점 \(\rm P\) 에 대하여 \(\angle {\rm F'PF}\) 의 이등분선이 \(x\) 축과 점 \({\rm A}(1,\;0)\) 에서 만날 때, 삼각형 \(\rm PF'F\) 의 둘레의 길이를 구하시오. 정답 18
반지름의 길이가 각각 \(2,\; 4,\; 8\)이고 서로 외접하는 세 개의 구가 평면 \(\alpha\) 위에 놓여 있다. 세 구의 중심을 각각 \(\rm A,\;B,\;C\)라 하고, 평면 \(\rm ABC\)와 평면 \(\alpha\)가 이루는 예각의 크기를 \(\theta\)라 하자. \(\cos \theta ={\Large \frac{b}{a}} \sqrt{2}\) 일 때, \(a+b\)의 값을 구하시오. (단, \(a,\;b)\)는 서로소인 자연수이다.) 정답 3
좌표공간에서 중심이 점 \(\rm A\)인 구 \((x-2)^2 +(y-1)^2 +(z+1)^2 =\) \(\dfrac{9}{4}\)와 중심이 점 \(\rm B\)인 구 \((x-3)^2 +(y-3)^2 +(z-1)^2 =\) \(\dfrac{27}{4}\)가 만나서 생기는 원을 \(S\)라 하자. 원 \(S\) 위의 두 점 \(\rm P,~Q\)에 대하여 \(\overrightarrow {{\rm{AP}}} \cdot \overrightarrow{{\rm {BQ}}} \)의 최댓값을 \(M\), 최솟값을 \(m\)이라고 할 때, \(M-m=\) \(\dfrac{b}{a}\)이다. \(a+b\)의 값을 구하시오. (단, \(a,~b\)는 서로소인 자연수이다.) 정답 35
그림과 같은 직사각형 \(\rm ABCD\)의 꼭짓점 \(\rm D\)에서 대각선 \(\rm AC\)에 내린 수선의 발을 \(\rm E\), 직선 \(\rm DE\)와 변 \(\rm BC\)의 교점을 \(\rm F\)라 하자. \(\angle \rm AEB = 45^o ,\;\; \overline {\rm AF} = 2\) 이고 \(\overline {\rm FC},\; \overline {\rm CD},\; \overline {\rm AD} \)가 이 순서로 등비수열을 이룰 때, 직사각형 \(\rm ABCD\)의 넓이는? (단, \(\overline {\rm AD} > \overline {\rm AB}\)) ① \(1+\sqrt{2}\) ② \(1+\sqrt{3}\) ③ \(1+\sqrt{5}\) ④ ..
두 수열 \( \left \{ a_n \right \} ,\; \left \{ b_n \right \} \) 에 대하여 수열 \[ a_1,\; b_1 ,\; a_2 ,\; b_2 , \; a_3 ,\; b_3 ,\; \cdots , \; a_n , \; b_n , \; \cdots \] 은 첫째항이 \(1\) 이고 공차가 \(2\) 인 등차수열이다. \(\lim \limits_{n \to \infty } \left( {\sqrt {{a_n}} - \sqrt {{b_n}} } \right)\) 의 값은? ① \(-1\) ② \(- \dfrac{1}{2} \) ③ \(0\) ④ \(\dfrac{1}{2}\) ⑤ \(1\) 정답 ③
\(4\) 이상의 자연수 \(n\)에 대하여 한 변의 길이가 \(1\)인 정 \(n\)각형의 한 꼭짓점에서 \((n-3)\)개의 대각선을 그려 나누어지는 \((n-2)\)개의 삼각형의 넓이를 원소로 하는 집합이 있다. 이 집합의 원소의 개수를 \(a_n\)이라 할 때, 다음 그림은 \(a_5 =2,\; a_6 =2\)임을 나타내는 것인다. 임의의 자연수 \(k\)가 \(a_{10k} + a_{20k+1} = pk+q\) 를 만족시킬 때, 상수 \(p,\; q\) 에 대하여 \(p+q\) 의 값은? ① \(10\) ② \(11\) ③ \(12\) ④ \(13\) ⑤ \(14\) 정답 ⑤
어떤 경품 행사장에서 \(\rm A,\;B,\;C\) 세 명이 당첨권 3매를 포함한 응모권 10매가 들어 있는 상자에서 \(\rm A,\;B,\;C\) 순서대로 1장씩 뽑기로 하였다. \(\rm A,\;B\) 중 적어도 한 명이 당첨권을 뽑았을 때, \(\rm C\)가 당첨권을 뽑을 확률은? (단, 한 번 뽑은 응모권은 다시 넣지 않는다.) ① \(\dfrac{3}{32}\) ② \(\dfrac{9}{64}\) ③ \(\dfrac{3}{16}\) ④ \(\dfrac{15}{64}\) ⑤ \(\dfrac{9}{32}\) 정답 ④
한 개의 주사위를 \(10\) 번 던질 때, \(1,\; 1,\; 1,\; 1,\; 1,\; 2,\; 3,\; 4,\; 5,\; 6\)과 같이 1의 눈이 다섯번 나타나고 \(2,\; 3,\; 4,\; 5,\; 6\)의 눈은 한 번 씩만 나타날 확률은 \(\dfrac{a}{2^5 \times 3^7}\) 이다. 자연수 \(a\)의 값은? ① \(35\) ② \(37\) ③ \(41\) ④ \(43\) ⑤ \(47\) 정답 ①
참고로 y=f(x)의 그래프는 아래와 같습니다. y=f'(x)의 그래프는 아래와 같습니다.