관리 메뉴




수악중독

기하와 벡터_벡터의 내적_내적의 정의_난이도 중 본문

(9차) 기하와 벡터 문제 풀이/벡터

기하와 벡터_벡터의 내적_내적의 정의_난이도 중

수악중독 2014.07.22 19:55

정의역이 \(\left \{ x | -\dfrac{\pi}{2} < x < \dfrac{\pi}{2} \right \}\) 인 함수 \(f(x)=\dfrac{1}{2} \left | \tan x \right |\) 가 있다. \(y\) 축 위의 점 \({\rm A}(0,\;t)\)와 곡선 \(y=f(x)\) 위의 임의의 두 점 \(\rm P, \;Q\) 에 대하여 항상 \(\overrightarrow{\rm PA}\cdot \overrightarrow{\rm AQ}\leq 0\) 가 성립하도록 하는 실수 \(t\) 의 최댓값은 \(a+b \pi\) 이다. \(80(a-b)\) 의 값을 구하시오.

 




-->