일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 이정근
- 수학1
- 수학2
- 미분
- 확률
- 심화미적
- 함수의 연속
- 수학질문답변
- 수열
- 이차곡선
- 수악중독
- 경우의 수
- 적분과 통계
- 행렬과 그래프
- 기하와 벡터
- 행렬
- 접선의 방정식
- 함수의 극한
- 수학질문
- 수만휘 교과서
- 수열의 극한
- 여러 가지 수열
- 로그함수의 그래프
- 중복조합
- 미적분과 통계기본
- 수능저격
- 적분
- 함수의 그래프와 미분
- 도형과 무한등비급수
- 정적분
- Today
- Total
목록표본평균의 분포 (9)
수악중독
각 면에 $0, \; 1, \; 2, \; 3, \; 4$ 의 숫자가 각각 $2$ 개, $4$ 개, $3$ 개, $2$ 개, $1$ 개 씩 적혀있는 정십이면체가 있다. 이 정십이면체를 $32$번 던져 바닥에 접하는 숫자들의 평균을 $\overline{X}$ 라고 할 때, ${\rm P} \left ( \overline{X} \ge k \right ) = 0.1587$ 을 만족시키는 상수 $k$ 의 값을 구하여라. (단, ${\rm P} (0 \le Z \le 1)=0.3413$ 이다.) 정답 $\dfrac{15}{8}$ 정십이면체를 던져 바닥에 접하는 숫자를 확률변수 $X$ 라고 하면 $X$ 의 확률분포는 아래 표와 같다. $X$ $0$ $1$ $2$ $3$ $4$ ${\rm P}(X)$ $\dfrac{..
어느 제과점에서 생산하는 식빵의 무게 $X$ 는 평균이 $m$, 표준편차가 $8$ 인 정규분포를 따른다고 한다. ${\rm P}(2m-a \le X \le a) =0.9544$ 일 때, 이 제과점에서 생산하는 식빵 중에서 임의로 추출한 $16$ 개의 식빵의 무게의 표본평균을 $\overline{X}$ 라 하자. $10000 \times {\rm P} \left ( \left | \overline{X}-a+12 \right | \le 1 \right )$ 의 값을 위의 표준정규분포표를 이용하여 구하시오. (단, $a$ 는 $m$ 보다 큰 상수이고, 무게의 단위는 $\rm g$ 이다.) 정답 $651$
어느 공장에서 생산되는 제품 $1$ 개의 무게는 평균이 $100 \rm kg$, 표준편차가 $2 \rm kg$ 인 정규분포를 따른다고 한다. 이 공장에서 생산된 제품 중에서 임의로 추출한 제품 $n$ 개의 무게의 표본평균이 $99.4 \rm kg$ 이상일 확률이 $0.9332$ 일 때, 자연수 $n$ 의 값을 오른쪽 표준정규분포표를 이용하여 구하시오. 정답 $25$
주머니 속에 \(1\) 의 숫자가 적혀 있는 공 \(1\) 개, \(3\) 의 숫자가 적혀 있는 공 \(n\) 개가 들어 있다. 이 주머니에서 임의로 \(1\) 개의 공을 꺼내어 공에 적혀 있는 수를 확인한 후 다시 넣는다. 이와 같은 시행을 \(2\) 번 반복하여 얻은 두 수의 평균을 \(\overline{X}\) 라 하자. \({\rm P} \left ( \overline{x} =1 \right ) = \dfrac{1}{49}\) 일 때, \({\rm E} \left ( \overline{X} \right ) = \dfrac{q}{p}\) 이다. \(p+q\) 의 값을 구하시오. (단, \(p\) 와 \(q\) 는 서로소인 자연수이다.) 정답 \(26\)
주머니 속에 \(1\) 의 숫자가 적혀 있는 공 \(1\) 개, \(2\) 의 숫자가 적혀 있는 공 \(2\) 개, \(3\) 의 숫자가 적혀 있는 공이 \(5\) 개가 들어 있다. 이 주머니에서 임의로 \(1\) 개의 공을 꺼내어 공에 적혀 있는 수를 확인한 후 다시 넣는다. 이와 같은 시행을 \(2\) 번 반복할 때, 꺼낸 공에 적혀 있는 수의 평균을 \(\overline{X}\) 라 하자. \({\rm P} \left ( \overline{X} =2 \right ) \) 의 값은? ① \(\dfrac{5}{32}\) ② \(\dfrac{11}{64}\) ③ \(\dfrac{3}{16}\) ④ \(\dfrac{13}{64}\) ⑤ \(\dfrac{7}{32}\) 정답 ⑤
정규분포 \({\rm N} \left ( m,\; 2^2 \right ) \) 을 따르는 모집단에서 임의추출한 크기 \(7\) 인 표본과 크기 \(10\)인 표본의 표본평균을 각각 \(\overline {\rm X_A},\; \overline {\rm X_B}\) 라 하고, \(\overline {\rm X_A}\) 와 \(\overline {\rm X_B}\) 의 분포를 이용하여 추정한 모평균 \(m\) 에 대한 신뢰도 \(95 \%\) 신뢰구간을 각각 \([a,\;b].\;\;[c,\;d]\) 라고 하자. 에서 옳은 것을 모두 고른 것은? ㄱ. \(\overline{\rm X_A}\) 의 분산은 \(\overline {\rm X_B}\) 의 분산보다 크다. ㄴ. \({\rm P} \left ( \ov..
세계핸드볼연맹에서 공인한 여자 일반부용 핸드볼 공을 생산하는 회사가 있다. 이 회사에서 생산된 핸드볼 공의 무게는 평균 \(\rm 350g\), 표준편차 \(\rm 16g\) 인 정규분포를 따른다고 한다. 이 회사는 일정한 기간 동안 생산된 핸드볼 공 중에서 임의로 추출된 핸드볼 공 \(64\) 개의 무게의 평균이 \(\rm 346g\) 이하이거나 \(\rm 355g\) 이상이면 생산 공정에 문제가 있다고 판단한다. 이 회사에서 생산 공정에 문제가 있다고 판단할 확률을 오른쪽 표준정규분포표를 이용하여 구한 것은? ① \(0.0290\) ② \(0.0258\) ③ \(0.0184\) ④ \(0.0152\) ⑤ \(0.0092\) 정답 ①
정규분포 \({\rm N} (m,\; 4)\) 를 따르는 모집단에서 크기 \(n\) 인 표본을 임의 추출하여 조사한 결과 표본평균이 \(\overline {X}\) 이었다. 모평균 \(m\) 을 \(\rm 95\%\) 의 신뢰도로 추정한 신뢰구간이 \[9.608 \le m \le 10.392\] 일 때, \(n+\overline {X}\) 의 값을 구하시오. (단, \({\rm P} (0 \le Z \le 1.96) = 0.4750)\) 정답 110
비중이 \(1\) 보다 작은 물체는 물에 뜨고 \(1\) 보다 큰 물체는 물 속에 가라앉는다. 여러 가지 재질의 혼합물로 만들어진 부피가 일정한 플라스틱 막대가 여러 개 있는데 막대 하나하나의 비중은 정규분포를 따른다고 한다. 이 막대들 중 임의로 \(4\) 개를 골라 부피와 무게를 무시할 수 있는 가는 끈으로 묶어 물에 넣으면 물에 뜰 확률이 \(10\%\) 라고 한다. 플라스틱 막대 중 임의로 \(1\) 개 택한 것이 물에 뜰 확률을 \(p\) 라 할 때, \(100p\) 의 값을 구하시오. (단, \({\rm P}(0 \le Z \le 1.30) = 0.40,\;\;\; {\rm P} (0 \le Z \le 0.65) = 0.24\) 이다.) 정답 26