일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 미분
- 정적분
- 도형과 무한등비급수
- 기하와 벡터
- 로그함수의 그래프
- 수학질문답변
- 접선의 방정식
- 수열
- 적분
- 확률
- 수학질문
- 경우의 수
- 행렬과 그래프
- 여러 가지 수열
- 적분과 통계
- 수학1
- 수학2
- 수악중독
- 함수의 연속
- 수능저격
- 행렬
- 이정근
- 함수의 그래프와 미분
- 수열의 극한
- 수만휘 교과서
- 심화미적
- 중복조합
- 이차곡선
- 함수의 극한
- 미적분과 통계기본
- Today
- Total
목록평균값의 정리 (16)
수악중독
다항함수 \(f(x)\) 가 모든 실수 \(x\) 에 대하여 \(f(-x)=-f(x)\) 를 만족시킨다. 함수 \(g(x)\) 를 \[g(x)=\dfrac{d}{dx} \displaystyle \int _{-\frac{\pi}{2}}^{x} \cos x \cdot f(t) dt\] 라 할 때, 옳은 것만을 에서 있는 대로 고른 것은? ㄱ. \(g(0)=0\) ㄴ. 모든 실수 \(x\) 에 대하여 \(g(-x)=-g(x)\) 이다.ㄷ. \(g'(x)=0\) 인 실수 \(c\) 가 열린구간 \(\left ( - \dfrac{\pi}{2}, \; \dfrac{\pi}{2} \right ) \) 에서 적어도 두 개 존재한다. ① ㄱ ② ㄱ, ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
오른쪽 그림은 수직선 위를 움직이는 점 \(\rm P\)의 시각 \(t\)에서의 속도 \(v(t)\)를 나타내는 그래프이다. \(v(t)\)는 \(t=2\)를 제외한 구간 \((0,\;3)\)에서 미분가능한 함수이고, \(v(t)\)의 그래프는 구간 \((0,\;1)\)에서 원점과 점 \((1,\;k)\)를 잇는 직선과 한 점에서 만난다. 점 \(\rm P\)의 시각 \(t\)에서의 가속도 \(a(t)\)를 나타내는 그래프의 개형으로 가장 알맞은 것은? 정답 ②
함수 \( f(x) = {\rm ln} x \) 에 대하여 함수 \( g(x) \) 를 \( g(x) = \dfrac{f(x)}{x-1} \;(x>1)\) 이라 할 때, 옳은 것만을 보기에서 있는대로 고른 것은? ㄱ. 방정식 \( g(e) = f'(x)\)의 근은 \( x=e-1\) 이다. ㄴ. \( g(x)\) 는 감소함수이다. ㄷ. \( a>1 \) 인 실수 \( a \) 에 대하여 \( \dfrac{1}{a} < g(a) < 1 \) ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤ 관련개념 [수능 수학/수능수학] - 평균값의 정리 [Calculus/AP Calculus] - 함수의 증가와 감소, 오목과 볼록, 그리고 변곡점 유사예제 [심화미적 질문과 답변/미분] - 심화미적_미분_..
닫힌구간 \([-1,\;3]\) 에서 정의된 함수 \(f(x)=x^3 -6x^2 +9x+5\) 에 대하여 구간 \([-1,\;3]\) 에 속하는 서로 다른 임의의 두 수 \(x_1 ,\; x_2 \;\;(x_1