일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 로그함수의 그래프
- 행렬
- 중복조합
- 정적분
- 이차곡선
- 적분
- 수능저격
- 수만휘 교과서
- 기하와 벡터
- 여러 가지 수열
- 심화미적
- 이정근
- 수학2
- 미분
- 적분과 통계
- 수학질문
- 확률
- 수악중독
- 수열
- 수열의 극한
- 함수의 그래프와 미분
- 수학질문답변
- 미적분과 통계기본
- 수학1
- 행렬과 그래프
- 함수의 연속
- 도형과 무한등비급수
- 함수의 극한
- 경우의 수
- 접선의 방정식
Archives
- Today
- Total
수악중독
미적분과 통계기본_미분_미분계수의 기하학적의미_난이도 중 본문
오른쪽 그림은 수직선 위를 움직이는 점 \(\rm P\)의 시각 \(t\)에서의 속도 \(v(t)\)를 나타내는 그래프이다. \(v(t)\)는 \(t=2\)를 제외한 구간 \((0,\;3)\)에서 미분가능한 함수이고, \(v(t)\)의 그래프는 구간 \((0,\;1)\)에서 원점과 점 \((1,\;k)\)를 잇는 직선과 한 점에서 만난다. 점 \(\rm P\)의 시각 \(t\)에서의 가속도 \(a(t)\)를 나타내는 그래프의 개형으로 가장 알맞은 것은?
Comments