일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수학1
- 수학질문
- 미적분과 통계기본
- 도형과 무한등비급수
- 함수의 그래프와 미분
- 확률
- 정적분
- 기하와 벡터
- 이정근
- 적분
- 수학2
- 수악중독
- 로그함수의 그래프
- 행렬
- 접선의 방정식
- 수학질문답변
- 미분
- 적분과 통계
- 심화미적
- 여러 가지 수열
- 함수의 연속
- 행렬과 그래프
- 이차곡선
- 수열의 극한
- 함수의 극한
- 경우의 수
- 수열
- 수만휘 교과서
- 중복조합
- 수능저격
- Today
- Total
목록역행렬의 존재조건 (14)
수악중독
다음 조건을 모두 만족하는 실수 \(x, \; y\) 에 대하여 좌표평면 위의 점 \({\rm P}(x, \;y)\) 와 원점 \(\rm O\) 를 연결한 선분 \(\rm OP\) 가 \(x\) 축의 양의 방향과 이루는 각의 크기를 \(\alpha\) 라 할 때, 모든 \(\alpha\) 의 합은? (단, \( 0 \leq \alpha < 2\pi )\) I. \(x^2 +y^2 =4\) II. 행렬 \(\left ( \matrix {x-1 & y \\ 0 & x+2} \right) \) 가 역행렬을 갖지 않는다. ① \(\dfrac{5}{3} \pi \) ② \(2\pi\) ③ \(\dfrac{7}{3}\pi\) ④ \(\dfrac{8}{3}\pi\) ⑤ \(3\pi\) 정답 ⑤
행렬 \(A= \left ( \matrix {4 & -2a \\ 2 & -a} \right ) \) 와 수열 \(\{x_n\},\;\; \{y_n\}\) 에 대하여 \[ A^n \left ( \matrix {4 \\ 1} \right ) = \left ( \matrix {x_n \\ y_n} \right ) \;\;\; (n=1,\; 2,\; 3,\; \cdots) \] 인 관계가 있다. \(\lim \limits _{n \to \infty} x_n = \lim \limits _{n \to \infty} y_n =0 \) 일 때, 모든 정수 \(a\) 의 값의 합을 구하시오. 정답 12
점 \({\rm P}(x,\;y)\) 가 부등식 \(0 \leq x \leq 1,\;0 \leq y \leq 1\) 이 나타내는 영역에 포함되고, 양수 \(a\) 에 대하여 행렬 \( \left ( \matrix {a & 2 \cr x & y} \right )\) 의 역행렬이 존재하지 않을 때, 점 \({\rm P}(x,\;y)\) 가 나타내는 도형의 길이를 \(f(a)\)라 하자. \(f(a)\) 의 최댓값이 \(M\) 일 때, \(M^2 \) 의 값을 구하시오. 정답 2
기울기가 \(0\)이 아닌 두 직선 \(y=ax+b,\;y=cx+d\) 에 대하여 행렬 \(A=\left ( \matrix { a & b \cr c& d} \right ) \) 라고 정의할 때, 에서 항상 옳은 것만을 있는 대로 고른 것은? ㄱ. 두 직선이 만나지 않으면 행렬 \(A\) 의 역행렬이 존재한다. ㄴ. 두 직선이 일치하면 행렬 \(A\) 의 역행렬이 존재하지 않는다. ㄷ. 두 직선이 \(x\) 축 위에서 만나면 행렬 \(A\) 의 역행렬이 존재하지 않는다. ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
역행렬을 갖지 않는 이차정사각행렬 \(A\) 가 등식 \[ A \left ( \matrix {1 \cr 2 } \right ) = \left ( \matrix { 4 \cr 1 } \right ), \;\; A \left ( \matrix {3 \cr 2} \right ) = \left ( \matrix { 1 \cr 5b } \right )\] 가 성립하도록 두 양수 \(a,\;b\) 의 값을 정할 때, \(a+{\Large \frac{5}{b}}\) 의 최솟값을 구하시오. 정답 20
오른쪽 그림과 같은 \( \triangle \rm ABC\) 에 대하여 두 행렬 \( A= \left ( \matrix { 2 & a \cr \sin {\rm A} & \sin {\rm B} } \right ),\;\;B=\left ( \matrix { {a^3 + b^3 + c^3 } & 3 \cr {abc} & 1} \right ) \) 이 모두 역행렬을 갖지 않을 때, \( \triangle {\rm ABC} \) 의 넓이는? ① \( \Large \frac {\sqrt {3}}{4} \) ② \( \Large \frac {\sqrt {3}}{2} \) ③ \( \sqrt {3} \) ④ \( 2 \sqrt {3} \) ⑤ \( 4 \sqrt {3} \) 정답 ③
행렬 \(A= \left ( \matrix { ax-a-2 & a^2 -1 \\ y & 2} \right ) \) 가 임의의 실수 \(a\) 에 대하여 역행렬을 가지도록 두 정수 \(x,\;y\) 의 값을 정할 때, 순서쌍 \((x,\;y)\) 의 개수는? ① \(8\) ② \(9\) ③ \(10\) ④ \(1\) ⑤ \(12\) 정답 ③
임의의 \(\theta\) 에 대하여 행렬 \(\left ( \matrix { \cos \theta +a & -\sin \theta \\ \sin \theta & b+ \cos \theta } \right )\) 의 역행렬이 존재하도록 할 때, 양의 실수 \(a,\;b\) 에 대하여 점 \((a,\;b)\) 가 존재하는 영역을 좌표평면 위에 나타내면? (단, 점선은 영역에 포함되지 않는다.) 정답 ②
좌표평면에서 두 점 \({\rm A}(1,\;\sqrt{3}),\; {\rm B}(1, \; -\sqrt{3})\) 에 대하여 다음 두 조건을 만족시키는 점 \({\rm P}(x,\;y)\) 가 나타내는 도형 전체의 길이는? (가) \(x^2 +y^2 =4\) (나) 선분 \(\rm AB\) 위의 임의의 점 \((1, \;a)\) 에 대하여 행렬 \( \left ( \matrix {x&y \\ 1&a} \right )\) 는 역행렬을 갖는다. ① \({\Large \frac{1}{3}} \pi\) ② \({\Large \frac{1}{2}} \pi\) ③ \(\pi\) ④ \({\Large \frac{4}{3}} \pi\) ⑤ \({\Large \frac{3}{2}} \pi\) 정답 ④