일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 미적분과 통계기본
- 이차곡선
- 수학질문답변
- 수만휘 교과서
- 수학질문
- 기하와 벡터
- 수열
- 정적분
- 함수의 그래프와 미분
- 수학2
- 수악중독
- 적분과 통계
- 행렬과 그래프
- 로그함수의 그래프
- 접선의 방정식
- 미분
- 도형과 무한등비급수
- 확률
- 적분
- 이정근
- 수열의 극한
- 심화미적
- 경우의 수
- 함수의 연속
- 수능저격
- 수학1
- 여러 가지 수열
- 함수의 극한
- 행렬
- 중복조합
- Today
- Total
목록(9차) 확률과 통계 문제풀이 (379)
수악중독
확률변수 \(X\) 가 이항분포 \({\rm B}(n, \;p)\) 를 따르고, \({\rm E}(3X)=18\), \({\rm E}\left ( 3x^2 \right )=120\) 일 때, \(n\) 의 값을 구하시오. 정답 \(18\)
좌표평면 위의 점 \(\rm P\) 가 다음 규칙에 따라 이동한다. (가) 원점에서 출발한다.(나) 동전을 \(1\) 개 던져서 앞면이 나오면 \(x\) 축의 방향으로 \(1\) 만큼 평행이동한다.(다) 동전을 \(1\) 개 던져서 뒷면이 나오면 \(x\) 축의 방향으로 \(1\) 만큼, \(y\) 축의 방향으로 \(1\) 만큼 평행이동한다. \(1\) 개의 동전을 \(6\) 번 던져서 점 \(\rm P\) 가 \((a, \;b)\) 로 이동하였다. \(a+b\) 가 \(3\) 의 배수가 될 확률이 \(\dfrac{q}{p}\) 일 때, \(p+q\) 의 값을 구하시오. (단, \(p, \;q\) 는 서로소인 자연수이다.) 정답 \(43\)
다음 조건을 만족시키는 네 자리 자연수의 개수는? (가) 각 자리의 수의 합은 \(14\) 이다.(나) 각 자리의 수는 모두 홀수이다. ① \(51\) ② \(52\) ③ \(53\) ④ \(54\) ⑤ \(55\) 정답 ②
\(5\) 명의 학생 \(\rm A.\; B,\; C,\; D,\; E\) 가 같은 영화를 보기 위해 함께 상영관에 갔다. 상영관에는 그림과 같이 총 \(5\) 개의 좌석만 남아 있었다. (가) 구역에는 \(1\) 열에 \(2\) 개의 좌석이 남아 있었고, (나) 구역에는 \(1\) 열에 \(1\) 개와 \(2\) 열에 \(2\) 개의 좌석이 남아 있었다.\(5\) 명의 학생 모두가 남아 있는 \(5\) 개의 좌석을 임의로 배정받기로 하였다. 학생 \(\rm A\) 와 \(\rm B\) 가 서로 다른 구역의 좌석을 배정받았을 때, 학생 \(\rm C\) 와 \(\rm D\) 가 같은 구역에 있는 같은 열의 좌석을 배정받을 확률은? ① \(\dfrac{1}{18}\) ② \(\dfrac{1}{12}\) ③..
주머니 속에 \(1\) 의 숫자가 적혀 있는 공 \(1\) 개, \(3\) 의 숫자가 적혀 있는 공 \(n\) 개가 들어 있다. 이 주머니에서 임의로 \(1\) 개의 공을 꺼내어 공에 적혀 있는 수를 확인한 후 다시 넣는다. 이와 같은 시행을 \(2\) 번 반복하여 얻은 두 수의 평균을 \(\overline{X}\) 라 하자. \({\rm P} \left ( \overline{x} =1 \right ) = \dfrac{1}{49}\) 일 때, \({\rm E} \left ( \overline{X} \right ) = \dfrac{q}{p}\) 이다. \(p+q\) 의 값을 구하시오. (단, \(p\) 와 \(q\) 는 서로소인 자연수이다.) 정답 \(26\)
확률변수 \(X\) 가 정규분포 \({\rm N}\left ( 4, 3^2 \right )\) 을 따를 때, \(\sum \limits_{n=1}^{7} {\rm P}(X \le n) = a\) 이다. \(10a\) 의 값을 구하시오. 정답 \(35\)
주머니에 \(1, \;1, \;2,\;3,\;4\) 의 숫자가 하나씩 적혀 있는 \(5\) 개의 공이 들어 있다. 이 주머니에서 임의로 \(4\) 개의 공을 동시에 꺼내어 임의로 일렬로 나열하고, 나열된 순서대로 공에 적혀 있는 수를 \(a. \; b,\; c,\; d\) 라 할 때, \( a \le b \le c \le d\) 일 확률은? ① \(\dfrac{1}{15}\) ② \(\dfrac{1}{12}\) ③ \(\dfrac{1}{9}\) ④ \(\dfrac{1}{6}\) ⑤ \(\dfrac{1}{3}\) 정답 ①
확률변수 \(X\) 는 정규분포 \({\rm N} \left ( 10, \; 4^2 \right )\), 확률변수 \(Y\) 는 정규분포 \({\rm N} \left ( m, \; 4^2 \right )\) 을 따르고, 확률변수 \(X\) 와 \(Y\) 의 확률밀도함수는 각각 \(f(x)\) 와 \(g(x)\) 이다. \[f(12)=g(26), \;\; {\rm P}(Y \ge 26) \ge 0.5\] 일 때, \({\rm P}(Y \le 20)\) 의 값을 오른쪽 표준정규분포표를 이용하여 구한 것은? ① \(0.0062\) ② \(0.0228\) ③ \(0.0896\) ④ \(0.1587\) ⑤ \(0.2255\) 정답 ②
다음 조건을 만족시키는 \(2\) 이상의 자연수 \(a, \;b, c,\;d\) 의 모든 순서쌍 \(a, \;b, \;c,\;d)\) 의 개수를 구하시오. (가) \(a+b+c+d=20\)(나) \(a, \; b,\; c,\; d\) 모두 \(d\) 의 배수이다. 정답 \(32\)