관리 메뉴


수악중독

기하와 벡터_공간도형 및 공간좌표_3차원을 2차원으로_난이도 중 본문

(9차) 기하와 벡터 문제 풀이/공간도형 및 공간좌표

기하와 벡터_공간도형 및 공간좌표_3차원을 2차원으로_난이도 중

수악중독 2009. 11. 1. 11:51

 

오른쪽 그림과 같이 반지름의 길이가 각각 \(4,\;1\) 인 두 구가 서로 외접하며 평평한 바닥 \(\alpha\) 의 \(\rm A,\;B\) 지점에 닿도록 놓여 있다. 또, 점 \(\rm A\) 를 지나며 직선 \(\rm AB\) 에 수직인 직선 \(l\) 이 평면 \(\alpha\) 위에 그어져 있다. 이때, 두 구의 맨 위 지점 \(\rm P,\;Q\) 를 지나고 직선 \(l\) 에 평행한 평면으로 두 구를 자를 때, 두 구의 단면의 넓이의 합은 \(\dfrac{k}{13}\pi\) 이다. 상수 \(k\) 의 값을 구하시오.



Comments