일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
- 이차곡선
- 도형과 무한등비급수
- 심화미적
- 함수의 연속
- 행렬과 그래프
- 함수의 그래프와 미분
- 수열의 극한
- 행렬
- 경우의 수
- 수학질문
- 수만휘 교과서
- 적분과 통계
- 로그함수의 그래프
- 미분
- 이정근
- 적분
- 중복조합
- 미적분과 통계기본
- 수능저격
- 수열
- 수학1
- 함수의 극한
- 접선의 방정식
- 확률
- 여러 가지 수열
- 기하와 벡터
- 수학질문답변
- 수학2
- 수악중독
- 정적분
Archives
- Today
- Total
수악중독
수학1_행렬과 그래프_행렬 진위형_난이도 중 본문
역행렬이 존재하는 두 이차정사각행렬 \(\rm A,\;B\) 가 \[(A+B) \left ( A^{-1} + B^{-1} \right ) =4E\] 를 만족시킨다. 옳은 것만을 <보기>에서 있는 대로 고른 것은?
(단, \(E\) 는 단위행렬이다.)
ㄱ. \(A^{-1} + B^{-1}\) 의 역행렬이 존재한다.
ㄴ. \(A=E\) 이면 \(B=E\) 이다.
ㄷ. \(AB= \dfrac{1}{2} E\) 이면 \(A^2 + B^2 =E\) 이다.
① ㄱ ② ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ
Comments