일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 행렬
- 이차곡선
- 수학질문
- 이정근
- 함수의 연속
- 적분
- 수만휘 교과서
- 행렬과 그래프
- 도형과 무한등비급수
- 적분과 통계
- 수학질문답변
- 경우의 수
- 여러 가지 수열
- 미분
- 기하와 벡터
- 심화미적
- 수능저격
- 수열
- 수학1
- 수열의 극한
- 로그함수의 그래프
- 정적분
- 함수의 그래프와 미분
- 수악중독
- 확률
- 중복조합
- 미적분과 통계기본
- 접선의 방정식
- 함수의 극한
- 수학2
- Today
- Total
목록부피와 적분 (7)
수악중독
그림과 같이 함수 $f(x)=\sqrt{x} e^{\frac{x}{2}}$ 에 대하여 좌표평면 위의 두 점 ${\rm A}(x, \;0), \; {\rm B}(x, \;f(x))$ 를 이은 선분을 한 변으로 하는 정사각형을 $x$ 축에 수직인 평면 위에 그린다. 점 $\rm A$의 $x$ 좌표가 $x=1$ 에서 $x=\ln 6$ 까지 변할 때, 이 정사각형이 만드는 입체도형의 부피는 $-a+b \ln 6$ 이다. $a+b$ 의 값을 구하시오. (단, $a$ 와 $b$ 는 자연수이다.) 정답 $12$
모든 실수 \(x\) 에 대하여 \( \displaystyle \int_0^x {\left( {x - t} \right)f\left( t \right)dt = {{\displaystyle \frac {1}{2}}}{x^2} - x + \sin x} \) 를 만족시키는 함수 \(f(x)\) 가 있다. 구간 \([0, \; 2 \pi]\) 에서 곡선 \(y=f \left ( x + {\displaystyle \frac{\pi}{2}} \right ) \) 와 \(x\) 축으로 둘러싸인 부분을 \(x\) 축의 둘레로 회전시킬 때 생기는 입체의 부피를 \(V\) 라 할 때, \(\displaystyle \frac{V}{\pi ^2}\) 의 값을 구하시오. 정답 3
함수 \(f(x)=\sqrt{[x]+1-\left ( x- [x] \right )^2 }\;\; (x \ge 0)\) 과 직선 \(x=n-1,\; x=n\) 및 \(x\) 축으로 둘러싸인 도형을 \(x\) 축의 둘레로 회전시킨 도형의 부피를 \(V_n\) 이라 할 때, \(\lim \limits _{n \to \infty} \dfrac{\sum \limits _{k=1}^{n} V_k }{n^2}\) 의 값은? (단, \([x]\) 는 \(x\) 보다 크지 않은 최대의 정수) ① \(\dfrac{\pi}{2}\) ② \(\pi\) ③ \(\dfrac{3\pi}{2}\) ④ \(2\pi\) ⑤ \(\dfrac{5\pi}{2}\) 정답 ①
곡선 \(y=\dfrac{a}{x} +b \;\; (a>0,\; b
오른쪽 그림과 같이 물이 가득 채워져 있는 직원기둥의 물통을 천천히 기울여 물을 쏟다가 밑면의 중심 \(\rm O\) 에 수면이 닿을 때, 멈추었다. 처음 물통에 채워져 있는 물의 양을 \(V\), 남아 있는 물의 양을 \(V_1\) 이라 할 때, \(\dfrac{V_1}{V}\) 의 값은? ① \(\dfrac{2}{3\pi}\) ② \(\dfrac{4}{3\pi}\) ③ \(\dfrac{2}{3} \pi\) ④ \(\dfrac{3}{4} \pi\) ⑤ \(\dfrac{2}{3} \pi\)