관리 메뉴




수악중독

적분과 통계_적분_회전체의 부피_난이도 중 본문

(9차) 미적분 II 문제풀이/적분

적분과 통계_적분_회전체의 부피_난이도 중

수악중독 2011.11.04 10:45
모든 실수 \(x\) 에 대하여 \( \displaystyle \int_0^x {\left( {x - t} \right)f\left( t \right)dt = {{\displaystyle \frac {1}{2}}}{x^2} - x + \sin x} \) 를 만족시키는 함수 \(f(x)\) 가 있다. 구간 \([0, \; 2 \pi]\) 에서 곡선 \(y=f \left ( x + {\displaystyle \frac{\pi}{2}} \right ) \) 와 \(x\) 축으로 둘러싸인 부분을 \(x\) 축의 둘레로 회전시킬 때 생기는 입체의 부피를 \(V\) 라 할 때, \(\displaystyle \frac{V}{\pi ^2}\) 의 값을 구하시오.
 



-->