일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 수학2
- 확률
- 행렬과 그래프
- 행렬
- 도형과 무한등비급수
- 이차곡선
- 여러 가지 수열
- 수악중독
- 심화미적
- 수만휘 교과서
- 미분
- 수학1
- 미적분과 통계기본
- 적분
- 접선의 방정식
- 기하와 벡터
- 함수의 연속
- 이정근
- 수학질문답변
- 수열
- 로그함수의 그래프
- 수학질문
- 정적분
- 적분과 통계
- 수열의 극한
- 중복조합
- 수능저격
- 경우의 수
- 함수의 그래프와 미분
- 함수의 극한
- Today
- Total
목록부분적분 (21)
수악중독
실수 전체의 집합에서 미분가능한 두 함수 $f(x), \; g(x)$ 가 모든 실수 $x$ 에 대하여 다음 조건을 만족시킨다. (가) $g(x+1)-g(x) = - \pi (e+1)e^x \sin(\pi x)$ (나) $g(x+1)=\displaystyle \int_0^x \left \{ f(t+1)e^t - f(t)e^t +g(t) \right \} dt$ $\displaystyle \int_0^1 f(x) dx = \dfrac{10}{9}e +4$ 일 때, $\displaystyle \int_1^{10} f(x) dx$ 의 값을 구하시오. 정답 $26$
구간 $(0, \; \infty)$ 에서 미분가능한 함수 $f(x)$ 가 다음 조건을 만족시킨다. (가) $\displaystyle \int_1^x f \left ( t^2 \right ) dt = 2xf(x)+4$ (나) $\displaystyle \int_1^e \dfrac{f(t)}{t} \; dt = 1+ \dfrac{1}{e^2} - \dfrac{3}{e^4}$ 함수 $g(x)= \displaystyle \int_0^{\ln x^2} f \left (e^t \right ) dt$ 에 대하여 $\displaystyle \int_1^e g(x) dx = k_1 e + \dfrac{k_2}{e} + \dfrac{k_3}{e^3} + k_4$ 일 때, $|k_1| + |k_2| + |k_3| + |k_..
실수 $t$ 에 대하여 함수 $f(x)$ 를 $$f(x)=\left \{ \begin{array}{cc} 1-|x-t| & (|x-t|\le 1) \\ 0 & (|x-t|>1) \end{array}\right .$$ 이라 할 때, 어떤 홀수 $k$ 에 대하여 함수 $$g(t)= \displaystyle \int_k^{k+8} f(x) \cos(\pi x)\; dx $$ 가 다음 조건을 만족시킨다. 함수 $g(t)$ 가 $t=\alpha$ 에서 극소이고 $g(\alpha)
다음은 $x$ 의 값의 범위에 따른 함수 $f(x)$ 의 증감표의 일부이다. $x$ $x=4$ $4
미분가능한 함수 $f(x)$ 가 다음의 등식을 만족시킬 때, $f(1)$ 의 값을 구하시오.$$\displaystyle \int_0^x f(t) \; dt = x^3 - 3x^2 +x + \int_0^x tf(x-t)dt, \;\; f(0)=1$$ 정답 $e-6$
실수 전체의 집합에서 미분가능한 함수 $f(x)$ 가 다음 조건을 만족시킨다. (가) $-1 \le x \le 1 $ 일 때 $f(x)=ax^3+bx^2+cx+d$ 이다. (단, $a, \; b, \; c, \; d$ 는 상수)(나) $x \ge 1$ 일 때 $2f(x)-2f(x-1)=f'(x)$ 이다.(다) 모든 실수 $x$ 에 대하여 $f(x)+f(-x)=0$ 이다. $f(1)=2e^2$ 일 때, $\displaystyle \int_{-2}^2 | f(x) | \; dx = pe^2+qe^4$ ($p, \;q$ 는 유리수)이다. $p+q$ 의 값은? ① $8$ ② $10$ ③ $12$ ④ $14$ ⑤ $16$ 정답 ①
실수 $a$ 와 함수 $f(x)=\dfrac{1}{2}x^4+\dfrac{1}{4}x^2 -c$ ($c>0$ 인 상수)에 대하여 함수 $g(x)$ 를 $g(x)=\displaystyle \int_a^x f(t)\; dt$ 라 하자. 함수 $y=g(x)$ 의 그래프가 $x$ 축과 만나는 서로 다른 점의 개수가 $2$ 개가 되도록 하는 모든 $a$ 의 값을 작은 수부터 크기순으로 나열하면 $\alpha_1, \; \alpha_2, \; \cdots, \; \alpha_m$ ($m$ 은 자연수)이다. $a=\alpha_1$ 일 때, 함수 $g(x)$ 와 상수 $k$ 는 다음 조건을 만족시킨다. (가) 함수 $g(x)$ 는 $x=2$ 에서 극솟값을 갖는다.(나) $\displaystyle \int_{\alpha..
실수 전체의 집합에서 미분가능한 함수 $f(x)$ 가 다음 조건을 만족시킨다. (가) $x \ge 2$ 인 모든 실수 $x$ 에 대하여 $f(x)>0$, $f(x)= \sqrt{2}e^2 + \displaystyle \int_2^x \dfrac{2 \left (t^2-t \right) e^{2t}}{f(t)} dt$ 이다.(나) $x
열린 구간 $\left ( - \dfrac{\pi}{2}, \; \dfrac{\pi}{2} \right )$ 에서 미분가능하고 $f(0)=1$ 인 함수 $f(x)$ 가 $- \dfrac{\pi}{2} 0$(나) $\left ( \dfrac{1}{f(x) \cos x} \right )^{\prime} = \dfrac{x}{\cos x}$ $g(x) = \displaystyle \int_0^x \dfrac{\tan t}{f(t)} \; dt$ 라 할 때, $g(4) + \dfrac{1}{f(4)}$ 의 값을 구하시오. 정답 $9$
구간 $[0, \;1]$ 에서 정의된 연속함수 $f(x)$ 에 대하여 함수 $$F(x) = \displaystyle \int_0^x f(t) dt \;\; (0 \le x \le 1)$$ 은 다음 조건을 만족시킨다.(가) $F(x) = f(x)-x$(나) $\displaystyle \int_0^1 F(x) dx = e - \dfrac{5}{2}$ 에서 옳은 것만을 있는 대로 고른 것은?ㄱ. $F(1)=e$ㄴ. $\displaystyle \int_0^1 x F(x) dx = \dfrac{1}{6}$ㄷ. $\displaystyle \int_0^1 \left \{ F(x) \right \}^2 dx = \dfrac{1}{2} e^2 -2e+\dfrac{11}{6}$ ① ㄴ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ..