일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수악중독
- 행렬
- 수학질문답변
- 중복조합
- 정적분
- 함수의 그래프와 미분
- 수열의 극한
- 로그함수의 그래프
- 도형과 무한등비급수
- 수학2
- 함수의 극한
- 적분과 통계
- 수학1
- 수열
- 기하와 벡터
- 경우의 수
- 이정근
- 접선의 방정식
- 여러 가지 수열
- 이차곡선
- 수학질문
- 행렬과 그래프
- 심화미적
- 함수의 연속
- 수만휘 교과서
- 미적분과 통계기본
- 확률
- 적분
- 미분
- 수능저격
- Today
- Total
목록미분계수 (26)
수악중독
함수 $f(x)=\dfrac{\ln x}{x}$ 와 양의 실수 $t$ 에 대하여 기울기가 $t$ 인 직선이 곡선 $y=f(x)$ 에 접할 때 접점의 $x$ 좌표를 $g(t)$ 라 하자. 원점에서 곡선 $y=f(x)$ 에 그은 접선의 기울기가 $a$ 일 때, 미분가능한 함수 $g(t)$ 에 대하여 $a \times g'(a)$ 의 값은? ① $-\dfrac{\sqrt{e}}{3}$ ② $-\dfrac{\sqrt{e}}{4}$ ③ $-\dfrac{\sqrt{e}}{5}$ ④ $-\dfrac{\sqrt{e}}{6}$ ⑤ $-\dfrac{\sqrt{e}}{7}$ 정답 ②
최고차항의 계수가 $1$ 인 삼차함수 $f(x)$ 와 함수 $$g(x)= \begin{cases} \dfrac{1}{x-4} & (x \ne 4) \\[10pt] 2 & (x=4) \end{cases}$$ 에 대하여 $h(x)=f(x)g(x)$ 라 할 때, 함수 $h(x)$ 는 실수 전체의 집합에서 미분가능하고 $h'(4)=6$ 이다. $f(0)$ 의 값을 구하시오. 더보기 정답 $32$
열린 구간 $\left ( - \dfrac{\pi}{2}, \; \dfrac{3\pi}{2} \right )$ 에서 정의된 함수 $$f(x) = \begin{cases} 2 \sin^3x & \left ( - \dfrac{\pi}{2} < x < \dfrac{\pi}{4} \right ) \\[10pt] \cos x & \left ( \dfrac{\pi}{4} \le x < \dfrac{3\pi}{2} \right ) \end{cases} $$ 가 있다. 실수 $t$ 에 대하여 다음 조건을 만족시키는 모든 실수 $k$ 의 개수를 $g(t)$ 라 하자. (가) $-\dfrac{\pi}{2}
함수 $f(x)= \left | x^2 -x -2 \right |$ 와 실수 $t$ 에 대하여 닫힌 구간 $[t-1, \; t]$ 에서 함수 $f(x)$ 의 최솟값을 $g(t)$ 라 하자. 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. $g(0)=g(2)$ㄴ. 함수 $g(t)$는 $t=1$ 에서 미분가능하다.ㄷ. $\lim \limits_{h \to 0} \dfrac{g(1+h)-g(1-h)}{h}$ 의 값이 존재한다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ④
평균변화율과 순간변화율 미분계수 도함수 곱의 미분법 $ r(x)=f(x)g(x)$일 때, $$r'(x) = f'(x)g(x) + f(x)g'(x)$$ 먼저 도함수의 정의를 이용하여 \(r'(x)\) 를 표현해 보자.$$r'(x) = \lim \limits_{h \to 0} \dfrac{r(x+h)-r(x)}{h}$$이제 $r(x)$ 를 모두 $f(x)g(x)$로 바꾸고 식을 약간 변형해 보자. $$\begin{aligned} r'(x) &= \lim \limits_{h \to 0} \dfrac{f(x+h)g(x+h)-f(x)g(x)}{h} \\ &= \lim \limits_{h \to 0} \dfrac{f(x+h)g(x+h)-g(x+h)f(x) + g(x+h)f(x) - f(x)g(x)}{h} \\ &=..
미분가능한 함수 \(f(x)\) 가 \(f(1)=0, \; \lim \limits_{x \to 1} \dfrac{\{f(x)\}^2-2f(x)}{1-x}=10\) 을 만족시킬 때, \(x=1\) 에서의 미분계수 \(f'(1)\) 의 값을 구하시오. 정답 \(5\)
이차함수 \(f(x)=x^2+ax+b\) (\(a,\;b\) 는 상수) 가 \(\lim \limits_{h \to 0} \dfrac{f(2h)}{h}=5\) 를 만족시킬 때, \(10(a+b)\) 의 값을 구하시오. 정답 \(25\)
최고차항의 계수가 \(1\) 인 삼차함수 \(f(x)\) 와 자연수 \(k\) 에 대하여 함수 \[g(x)=\left\{ {\begin{array}{ll} {\dfrac{{f\left( x \right)}}{{{x^k}}}}&{\left( {x \ne 0} \right)}\\ a&{\left( {x = 0} \right)}\end{array}} \right.\] 가 \(x=0\) 에서 미분가능할 때, 옳은 것만을 보기에서 있는 대로 고른 것은? (단, \(a\) 는 상수이다.) ㄱ. \(f(0)=0\) ㄴ. \(g'(0)=1\) ㄷ. \(k=2\) 이고 \(g(0)=1\) 이면 \(f(1)=2\) ① ㄱ ② ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ③
모든 계수가 정수인 삼차함수 \(y=f(x)\) 는 다음 조건을 만족시킨다. (가) 모든 실수 \(x\) 에 대하여 \(f(-x)=-f(x)\) 이다.(나) \(f(1)=5\)(다) \(1
함수 \(f(x)=x^3 -3x\) 에 대하여 구간 \([0,\; a_1 ]\) 에서의 평균변화율과 같은 순간변화율(미분계수)을 갖는 점의 \(x\) 좌표를 \(a_2\), 구간 \([0, \; a_2 ] \) 에서의 평균변화율과 같은 순간변화율(미분계수)을 갖는 점의 \(x\) 좌표를 \(a_3\) 라고 하자. 이와 같이 계속하여 \(a_4 , \; a_5 , \; \cdots\) 를 정할 때, 옳은 내용을 에서 모두 고른 것은? (단, \(a_1 ,\; a_2 , \; a_3 ,\; \cdots\) 은 양수이다. ㄱ. 모든 자연수 \(n\) 에 대하여 \(f(a_n ) >f(a_{n+1})\) 이다. ㄴ. 모든 자연수 \(n\) 에 대하여 \(f'(a_n ) > f'(a_{n+1})\) 이다. ㄷ. ..