일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 함수의 그래프와 미분
- 수능저격
- 행렬과 그래프
- 함수의 연속
- 여러 가지 수열
- 수학질문답변
- 이정근
- 미적분과 통계기본
- 미분
- 중복조합
- 정적분
- 적분과 통계
- 이차곡선
- 적분
- 수열의 극한
- 경우의 수
- 수학2
- 접선의 방정식
- 로그함수의 그래프
- 도형과 무한등비급수
- 함수의 극한
- 수만휘 교과서
- 확률
- 수학1
- 심화미적
- 수악중독
- 수열
- 수학질문
- 기하와 벡터
- 행렬
- Today
- Total
목록공간좌표 (12)
수악중독
그림과 같이 평면 $\alpha$ 위에 중심이 점 $\rm A$ 이고 반지름의 길이가 $\sqrt{3}$ 인 원 $C$ 가 있다. 점 $\rm A$ 를 지나고 평면 $\alpha$ 에 수직인 직선 위의 점 $\rm B$ 에 대하여 $\overline{\rm AB}=3$ 이다. 원 $C$ 위의 점 $\rm P$ 에 대하여 원 $D$ 가 다음 조건을 만족시킨다. (가) 선분 $\rm BP$ 는 원 $D$ 의 지름이다.(나) 점 $\rm A$ 에서 원 $D$ 를 포함하는 평면에 내린 수선의 발 $\rm H$ 는 선분 $\rm BP$ 위에 있다. 평면 $\alpha$ 위에 $\overline{\rm AX}=5$ 인 점 $\rm X$ 가 있다. 점 $\rm P$ 가 원 $C$ 위를 움직일 때, 원 $D$ 위의 점..
$xy$ 평면 위의 직선 $x=1$ 위의 임의의 점을 $\rm P$, 두 구 $$\begin{aligned} (x+1)^2+y^2+(z-4)^2 &=1, \\[10pt] (x-9)^2+(y-10)^2+(z+4)^2&=1\end{aligned} $$ 위의 임의의 점을 각각 $\rm Q, R$ 이라 하자. 이때 $\overline{\rm PQ}+\overline{\rm PR}$ 의 최솟값을 $m$ 이라 할 때, $(m+2)^2$ 의 값을 구하시오. 정답 $280$
1. 공간좌표 - 개념정리 2. 공간좌표 - 기본문제 & 대표유형 01, 02 3. 공간에서 두 점 사이의 거리 - 개념정리 4. 공간에서 두 점 사이의 거리 - 대표유형 03 5. 공간에서 두 점 사이의 거리 - 대표유형 04, 05 6. 공간에서 두 점 사이의 거리 - 대표유형 06 7. 공간에서 내분점과 외분점 - 개념정리 8. 공간에서 내분점과 외분점 - 기본문제 & 대표유형 07, 08 9. 구의 방정식 - 개념정리 10. 구의 방정식 - 기본문제 & 대표유형 09 전반부 11. 구의 방정식 - 대표유형 09 후반부 이전 다음
좌표공간에 한 직선 위에 있지 않은 세 점 $\rm A, \; B, \; C$ 가 있다. 다음 조건을 만족시키는 평면 $\alpha$ 에 대하여 각 점 $\rm A, \; B, \; C$ 와 평면 $\alpha$ 사이의 거리 중에서 가장 작은 값을 $d(\alpha)$ 라 하자. (가) 평면 $\alpha$ 는 선분 $\rm AC$ 와 만나고, 선분 $\rm BC$ 와도 만난다. (나) 평면 $\alpha$ 는 선분 $\rm AB$ 와 만나지 않는다. 위의 조건을 만족시키는 평면 $\alpha$ 중에서 $d(\alpha)$ 가 최대가 되는 평면을 $\beta$ 라 할 때, 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. 평면 $\beta$ 는 세 점 $\rm A, \; B, \; C$ 를 지나는 평면과 수..
그림과 같이 직선 $l$ 을 교선으로 하고 이루는 각의 크기가 $\dfrac{\pi}{3}$ 인 두 평면 $\alpha, \; \beta$ 가 있고, 평면 $\alpha$ 위의 점 $\rm A$ 와 평면 $\beta$ 위의 점 $\rm B$ 가 있다. 점 $\rm A$ 에서 평면 $\beta$ 에 내린 수선의 발을 $\rm A'$, 점 $\rm B$ 에서 평면 $\alpha$ 에 내린 수선의 발을 $\rm B'$ 이라 하자. $\overline{\rm AA'} = \sqrt{3}$, $\overline{\rm BB'}=\sqrt{3}$, $\overline{\rm A'B'}=\sqrt{2}$ 일 때, 사면체 $\rm AA'B'B$ 의 부피는? ① $\dfrac{\sqrt{3}}{2}$ ② $\dfrac{..
공간좌표의 정의와 표현 두 점 사이의 거리, 내분점과 외분점 구의 방정식 관련 예제 구와 구의 교선을 지나는 또 다른 구_난이도 하 구의 방정식_난이도 중 구의 방정식_난이도 중 구의 방정식_난이도 중 구의 방정식_난이도 중 아폴로니오스의 구_난이도 중 구의 방정식_난이도 중 구의 방정식_난이도 중 평면에 접하는 구_난이도 상 세 평면에 접하는 구의 방정식_난이도 상 구의 방정식_난이도 상 이전 다음
그림과 같이 모든 모서리의 길이가 \(6\) 인 정삼각기둥 \(\rm ABC-DEF\) 가 있다. 변 \(\rm DE\) 의 중점 \(\rm M\) 에 대하여 선분 \(\rm BM\) 을 \(1:2\) 로 내분하는 점을 \(\rm P\) 라 하자. \(\overline{\rm CP}=l\) 일 때, \(10l^2\) 의 값을 구하시오. 정답 \(350\)
좌표공간의 선분 \(\rm AB\) 를 \(xy, \; yz\) 평면에 정사영 시킨 선분의 길이가 각각 \(a, \; b \) (단, \(a< \;b\)) 일 때, \(\overline{\rm AB}\) 의 최댓값 \(M\) 과 최솟값 \(m\) 에 대하여 \(\sqrt{M^2 - m^2}\) 의 값은? ① \(\sqrt{a^2 +b^2}\) ② \(\sqrt{a^2 -b^2}\) ③ \(a\) ④ \(b\) ⑤ \(b-a\) 더보기 정답 ③
좌표공간에서 평면 \(x=3\) 과 평면 \(z=1\) 의 교선을 \(l\) 이라 하자. 점 \(\rm P\) 가 직선 \(l\) 위를 움직일 때, 선분 \(\rm OP\) 의 길이의 최솟값은? (단, \(\rm O\) 는 원점이다.) ① \(2\sqrt{2}\) ② \(\sqrt{10}\) ③ \(2\sqrt{3}\) ④ \(\sqrt{14}\) ⑤ \(3\sqrt{2}\) 정답 ②
아래 그림과 같은 구 모양의 지구본이 있다. 구의 중심을 \(\rm O\), 적도 상에 있는 동경 \(120^{\rm o}\) 인 지점을 \(\rm A\) 라 하고, 동경 \(150^{\rm o}\), 북위 \(30^{\rm o}\) 인 지점을 \(\rm B\) 라 하자. \(\angle \rm AOB\) 의 크기를 \(\omega\) 라 할 때, \(\cos \omega\) 의 값은?① \(\dfrac{1}{4}\) ② \(\dfrac{\sqrt{2}}{4}\) ③ \(\dfrac{1}{2}\) ④ \(\dfrac{\sqrt{3}}{4}\) ⑤ \(\dfrac{3}{4}\) 정답 ⑤