일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수능저격
- 함수의 극한
- 수학2
- 미분
- 심화미적
- 함수의 연속
- 정적분
- 수만휘 교과서
- 접선의 방정식
- 로그함수의 그래프
- 경우의 수
- 중복조합
- 수학질문답변
- 확률
- 수학1
- 이차곡선
- 행렬과 그래프
- 수악중독
- 행렬
- 수학질문
- 기하와 벡터
- 도형과 무한등비급수
- 수열
- 적분
- 여러 가지 수열
- 함수의 그래프와 미분
- 적분과 통계
- 수열의 극한
- 미적분과 통계기본
- 이정근
- Today
- Total
목록(9차) 확률과 통계 문제풀이/경우의 수 (169)
수악중독
\(X=\left\{1,\;2,\;3,\;4,\;5,\;6\right\}\)의 공집합이 아닌 부분집합 중 연속하는 두 수를 포함하지 않는 것의 개수는? ① 10 ② 15 ③ 20 ④ 25 ⑤ 30 정답 ③
아래 그림과 같이 정육면체의 상자를 3개의 끈을 사용하여 각 모서리의 중점을 지나도록 십자로 묶었다. 꼭짓점 \(\rm A\)에서 상자의 모서리 또는 끈을 지나 꼭짓점 \(\rm B\)로 가는 최단 경로의 수는? (단, 끈의 매듭은 무시한다.) ① \(28\) ② \(36\) ③ \(54\) ④ \(72\) ⑤ \(90\) 정답 ③
오른쪽 그림과 같은 도로망이 있다. 지나간 길은 다시 지나지 않으면서 \(\rm P\) 지점에서 \(\rm Q\) 지점을 거쳐 \(\rm R\) 지점으로 가는 서로 다른 방법의 수는? (단, 가는 길은 왼쪽에서 오른쪽으로 도로를 따라 이동하며, 최단 거리일 필요는 없다.) ① \(243\) ② \(324\) ③ \(405\) ④ \(445\) ⑤ \(486\) 정답 ③
오른쪽 그림과 같이 \(1\)부터 \(9\)까지 쓰여 있는 정사각형 모양의 숫자판이 있다. 다음과 같은 조건에 따라 숫자판 내의 \(9\)개의 정사각형을 모두 지나는 방법의 수는? (가) 변을 공유하는 이웃한 정사각형으로만 이동할 수 있다. (나) 이미 지난 정사각형으로는 이동할 수 없다. ① \(32\) ② \(36\) ③ \(40\) ④ \(48\) ⑤ \(56\) 정답 ③
어느 신도시의 도로망은 아래 그림과 같이 정사각형 모양으로 이루어져 있다고 한다. 도현이는 \(\rm A\)지점에서 \(\rm B\)지점으로, 슬기는 \(\rm B\)지점에서 \(\rm A\)지점으로 최단 거리를 택하여 간다고 할 때, 도현이와 슬기가 만나지 않고 각자의 목적지에 도착하는 경우의 수는? (단, 도현이와 슬기의 속력은 같다.) ① \(20\) ② \(180\) ③ \(236\) ④ \(380\) ⑤ \(390\) 정답 ③
\(5^3\)개의 작은 정육면체를 쌓아 새로운 \(5\times 5\times 5\) 정육면체를 만든다. 이 도형의 선을 따라 갈라서 만들 수 있는 육면체 중에서 정육면체가 아닌 것의 개수를 구하시오. 정답 3150
양의 정수 \(n\)에 대하여 \( \left ( 4x^3 - {\dfrac{1}{2x^2}} \right)^n \)을 전개했을 때 상수항이 존재하도록 하는 \(n\)의 최솟값을 구하고, 그 때의 상수항을 구하시오. 정답 n=5, 상수항=-20
집합 \( A=\left \{ 1,\;2,\;3,\;4,\;5,\;6\right\}\)에 대하여 \(f=f^{-1} \)가 성립하도록하는 함수 \(f\; : \; A \rightarrow A\)의 개수를 구하시오. (단, \(f^{-1} \)는 \(f\) 의 역함수이다.) 정답 76
8가지 서로 다른 색을 이용하여 아래 그림과 같은 정사면체의 모든 면에 서로 다른 색을 칠하는 방법의 수는? (단, 한 면에 한 가지 색만 칠하고, 이 정사면체는 회전 가능하다.) ① \(70\) ② \(140\) ③ \(210\) ④ \(420\) ⑤ \(560\) 정답 ② [관련개념] [수능 수학/수능수학] - 정다면체 주사위 만들기 (정다면체 색칠하기)
전체집합 \(U=\left \{ 1,\;2,\;3,\;4,\;5,\;6,\;7 \right\}\)의 두 부분집합 \(A,\;B\)가 다음 두 조건을 만족할 때, 순서쌍 \((A,\;B)\)로 나타내기로 하자. (가) \((A\cup B)=U\) (나) \(n(A)=4,\;n(B)=5\) 이 때, 순서쌍 \((A,\;B)\)의 개수는? (단, \(n(X)\)는 집합 \(X\)의 원소의 개수이다.) ① \(210\) ② \(220\) ③ \(240\) ④ \(250\) ⑤ \(260\) 정답 ①