일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- 심화미적
- 확률
- 수학2
- 수열
- 적분과 통계
- 접선의 방정식
- 중복조합
- 미분
- 수능저격
- 함수의 그래프와 미분
- 수학질문답변
- 정적분
- 행렬과 그래프
- 수열의 극한
- 함수의 극한
- 로그함수의 그래프
- 적분
- 도형과 무한등비급수
- 수만휘 교과서
- 미적분과 통계기본
- 함수의 연속
- 여러 가지 수열
- 수학질문
- 행렬
- 경우의 수
- 수악중독
- 기하와 벡터
- 이차곡선
- 이정근
- 수학1
- Today
- Total
목록2024/09/04 (41)
수악중독
실수 전체의 집합에서 미분가능한 함수 $f(x)$ 가 모든 실수 $x$ 에 대하여 $$f(x)+f \left ( \dfrac{1}{2} \sin x \right ) = \sin x$$ 를 만족시킬 때, $f'(\pi)$ 의 값은? ① $-\dfrac{5}{6}$ ② $-\dfrac{2}{3}$ ③ $-\dfrac{1}{2}$ ④ $-\dfrac{1}{3}$ ⑤ $-\dfrac{1}{6}$ 더보기정답 ②
함수 $f(x)$ 는 실수 전체의 집합에서 연속인 이계도함수를 갖고, 실수 전체의 집합에서 정의된 함수 $g(x)$ 를 $$g(x)=f'(2x)\sin \pi x +x$$ 라 하자. 함수 $g(x)$ 는 역함수 $g^{-1}(x)$ 를 갖고, $$\displaystyle \int_0^1 g^{-1}(x)dx = 2 \int_0^1 f'(2x)\sin \pi x dx +\dfrac{1}{4}$$ 을 만족시킬 때, $\displaystyle \int_0^2 f(x) \cos \dfrac{\pi}{2} x dx$ 의 값은? ① $-\dfrac{1}{\pi}$ ② $-\dfrac{1}{2\pi}$ ③ $-\dfrac{1}{3\pi}$ ④ $-\dfrac{1}{4\..
수열 $\{a_n\}$ 의 첫째항부터 제$m$항까지의 합을 $S_m$ 이라 하자. 모든 자연수 $m$ 에 대하여 $$S_m = \sum \limits_{n=1}^{\infty} \dfrac{m+1}{n(n+m+1)}$$ 일 때, $a_1 +a_{10}=\dfrac{q}{p}$ 이다. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.) 더보기정답 $57$
양수 $k$ 에 대하여 함수 $f(x)$ 를 $$f(x)=(k-|x|)e^{-x}$$ 이라 하자. 실수 전체의 집합에서 미분가능하고 다음 조건을 만족시키는 모든 함수 $F(x)$ 에 대하여 $F(0)$ 의 최솟값을 $g(k)$ 라 하자. 모든 실수 $x$ 에 대하여 $F'(x)=f(x)$ 이고 $F(x) \ge f(x)$ 이다. $g \left (\dfrac{1}{4} \right ) + g \left ( \dfrac{3}{2} \right )=pe+q$ 일 때, $100(p+q)$ 의 값을 구하시오. (단, $\lim \limits_{x \to \infty} xe^{-x}=0$ 이고, $p$ 와 $q$ 는 유리수이다.) 더보기정답 $25$
타원 $\dfrac{x^2}{4^2}+\dfrac{y^2}{b^2}=1$ 의 두 초점 사이의 거리가 $6$ 일 때, $b^2$ 의 값은? (단, $0 ① $4$ ② $5$ ③ $6$ ④ $7$ ⑤ $8$ 더보기정답 ④$2\sqrt{16-b^2}=6$$16-b^2=9$$\therefore b^2=7$
좌표공간의 서로 다른 두 점 $\mathrm{A}(a, \; b, \; -5)$, $\mathrm{B}(-8, \; 6, \; c)$ 에 대하여 선분 $\mathrm{AB}$ 의 중점이 $zx$ 평면 위에 있고, 선분 $\mathrm{AB}$ 를 $1:2$ 로 내분하는 점이 $y$ 축 위에 있을 때, $a+b+c$ 의 값은? ① $-8$ ② $-4$ ③ $0$ ④ $4$ ⑤ $8$ 더보기정답 ⑤
좌표평면에서 점 $(1, \; 0)$ 을 중심으로 하고 반지름의 길이가 $6$ 인 원을 $C$ 라 하자. 포물선 $y^2=4x$ 위의 점 $\left (n^2, \; 2n \right )$ 에서의 접선이 원 $C$ 와 만나도록 하는 자연수 $n$ 의 개수는? ① $1$ ② $3$ ③ $5$ ④ $7$ ⑤ $9$ 더보기정답 ③
그림과 같이 한 변의 길이가 각각 $4, \; 6$ 인 두 정사각형 $\mathrm{ABCD, \; EFGH}$ 를 밑면으로 하고 $$\overline{\mathrm{AE}}=\overline{\mathrm{BF}}=\overline{\mathrm{CG}}=\overline{\mathrm{DH}}$$ 인 사각뿔대 $\mathrm{ABCD-EFGH}$ 가 있다. 사각뿔대 $\mathrm{ABCD-EFGH}$ 의 높이가 $\sqrt{14}$ 일 때, 사각형 $\mathrm{AEHD}$ 의 평면 $\mathrm{BFGC}$ 위로의 정사영의 넓이는? ① $\dfrac{10}{3}\sqrt{15}$ ② $\dfrac{11}{3}\sqrt{15}$ ③ $4\sqrt{15}$ ..
좌표공간에 두 점 $\mathrm{A}(a, \; 0, \; 0)$, $\mathrm{B} \left (0, \; 10\sqrt{2}, \; 0 \right )$ 과 구 $S:x^2+y^2+z^2=100$ 이 있다. $\angle \mathrm{APO}=\dfrac{\pi}{2}$ 인 구 $S$ 위의 모든 점 $\mathrm{P}$ 가 나타내는 도형을 $C_1$, $\angle \mathrm{BQO}=\dfrac{\pi}{2}$ 인 구 $S$ 위의 모든 점 $\mathrm{Q}$ 가 나타내는 도형을 $C_2$ 라 하자. $C_1$ 과 $C_2$ 가 서로 다른 두 점 $\mathrm{N}_1, \; \mathrm{N}_2$ 에서 만나고 $\cos (\angle \mathrm{N_1ON_2})=\dfrac{..
그림과 같이 두 점 $\mathrm{F}(4, \; 0)$, $\mathrm{F'}(-4, \; 0)$ 을 초점으로 하는 쌍곡선 $C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ 이 있다. 점 $\mathrm{F}$ 를 초점으로 하고 $y$ 축을 준선으로 하는 포물선이 쌍곡선 $C$ 와 만나는 점 중 제$1$사분면 위의 점을 $\mathrm{P}$ 라 하자. 점 $\mathrm{P}$ 에서 $y$ 축에 내린 수선의 발을 $\mathrm{H}$ 라 할 때, $\overline{\mathrm{PH}}:\overline{\mathrm{HF}}=3:2\sqrt{2}$ 이다. $a^2 \times b^2$ 의 값을 구하시오. (단, $a>b>0$) 더보기정답 $63$