일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- 수악중독
- 수능저격
- 로그함수의 그래프
- 함수의 그래프와 미분
- 수학1
- 경우의 수
- 수열의 극한
- 도형과 무한등비급수
- 행렬
- 미적분과 통계기본
- 확률
- 함수의 연속
- 적분
- 정적분
- 행렬과 그래프
- 미분
- 접선의 방정식
- 심화미적
- 이정근
- 수학질문
- 함수의 극한
- 기하와 벡터
- 이차곡선
- 중복조합
- 수만휘 교과서
- 수열
- 수학질문답변
- 적분과 통계
- 수학2
- 여러 가지 수열
- Today
- Total
목록2023/07 (43)
수악중독
두 초점이 $\mathrm{F}(c, \; 0), \; \mathrm{F'}(-c, \; 0) \; (c \gt 0)$ 인 쌍곡선 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ 과 점 $\mathrm{A}(0, \; 6)$ 을 중심으로 하고 두 초점을 지나는 원이 있다. 원과 쌍곡선이 만나는 점 중 제$1$사분면에 있는 점 $\mathrm{P}$ 와 두 직선 $\mathrm{PF', \; AF}$ 가 만나는 점 $\mathrm{Q}$ 가 $$\overline{\mathrm{PF}}:\overline{\mathrm{PF'}}=3:4, \quad \angle \mathrm{F'QF}=\dfrac{\pi}{2}$$ 를 만족시킬 때, $b^2-a^2$ 의 값은? (단, $a, \; b$ 는..
좌표평면 위에 길이가 $6$ 인 선분 $\mathrm{AB}$ 를 지름으로 하는 원이 있다. 원 위의 서로 다른 두 점 $\mathrm{C, \; D}$ 가 $$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=27, \quad \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}=9, \quad \overline{\mathrm{CD}} \gt 3$$ 을 만족시킨다. 선분 $\mathrm{AC}$ 위의 서로 다른 두 점 $\mathrm{P, \; Q}$ 와 상수 $k$ 가 다음 조건을 만족시킨다. (가) $\dfrac{3}{2} \overrightarrow{\mathrm{DP}}-..
공간에 중심이 $\mathrm{O}$ 이고 반지름의 길이가 $4$ 인 구가 있다. 구 위의 서로 다른 세 점 $\mathrm{A, \; B, \; C}$ 가 $$\overline{\mathrm{AB}}=8, \quad \overline{\mathrm{BC}}=2\sqrt{2}$$ 를 만족시킨다. 평면 $\mathrm{ABC}$ 위에 있지 않은 구 위의 점 $\mathrm{D}$ 에서 평면 $\mathrm{ABC}$ 에 내린 수선의 발을 $\mathrm{H}$ 라 할 때, 점 $\mathrm{D}$ 가 다음 조건을 만족시킨다. (가) 두 직선 $\mathrm{OC, \; OD}$ 가 서로 수직이다. (나) 두 직선 $\mathrm{AD, \; OH}$ 가 서로 수직이다. 삼각형 $\mathrm{DAH}$ ..