관리 메뉴


수악중독

미적분과 통계기본_미분_함수의 그래프_난이도 중 본문

(9차) 미적분 I 문제풀이/미분

미적분과 통계기본_미분_함수의 그래프_난이도 중

수악중독 2009. 10. 21. 02:07
함수 \(f(x)=x^3 -3x\) 에 대하여 구간 \([0,\;a_1 ]\) 에서의 평균변화율과 같은 순간변화율을 갖는 점의 \(x\) 좌표를 \(a_2 \), 구간 \([0,\; a_2 ]\) 에서의 평균변화율과 같은 순간변화율을 갖는 점의 \(x\) 좌표를 \(a_3 \) 이라고 하자. 이와 같이 계속하여 \( a_4 ,\; a_5 ,\; \cdots\) 를 정할 때, 옳은 내용을 <보기>에서 모두 고른 것은? (단, \( a_1 , \; a_2 , \; a_3 , \; \cdots\) 은 양수이다.)

ㄱ. 모든 자연수 \(n\) 에 대햐여 \(f(a_n )>f(a_{n+1} )\) 이다.
ㄴ. 모든 자연수 \(n\) 에 대하여 \(f \;' (a_n ) > f \;' (a_{n+1} )\) 이다.
ㄷ. \(\lim \limits_{n \to \infty } f \;' ({a_n}) =  - 3\)

① ㄴ          ② ㄷ           ③ ㄱ, ㄴ          ④ ㄴ, ㄷ           ⑤ ㄱ, ㄴ, ㄷ

Comments