관리 메뉴


수악중독

미적분과 통계기본_함수의 극한_극한의 활용_난이도 중 본문

(9차) 미적분 I 문제풀이/함수의 극한 및 연속

미적분과 통계기본_함수의 극한_극한의 활용_난이도 중

수악중독 2009. 9. 21. 09:30

오른쪽 그림과 같이 원점 \(\rm O\) 에서 \(x\) 축에 접하며 포물선 \(y={\Large \frac{1}{3}} x^2\) 위의 점 \({\rm P} (a,\;b)\) 를 지나는 원이 \(y\) 축과 만나는 점을 \(\rm A\) 라 한다. 점 \(\rm P\) 가 원점 \(\rm O\) 에 한없이 가까워질 때, \(\overline {\rm AP}\) 의 극한 \(\lim \limits _{a \to 0} \overline {\rm AP}\) 의 값을 구하시오. (단, 점 \(\rm A\) 는 원점이 아니다.)



Comments