관리 메뉴




수악중독

미적분과 통계기본_확률_확률의 곱셈정리_난이도 하 본문

(9차) 확률과 통계 문제풀이/확률

미적분과 통계기본_확률_확률의 곱셈정리_난이도 하

수악중독 2011. 11. 1. 10:40
\(3\) 문제가 차례로 주어지는 퀴즈대회에서 한 문제를 틀리면 다음 문제에 도전하지 못한 채 탈락하고, 세 문제를 모두 맞히면 상품을 받는다고 한다. 이 퀴즈대회에 출전한 경험이 있는 사람들을 대상으로 조사했더니, 첫 번째 문제를 맞힐 확률은 \(60\%\), 두 번째 문제에 도전했을 때 그 문제를 맞힐 확률은 \(40\%\) 이었고, 세 번째 문에제 도전했을 때 그 문제를 맞힐 확률은 \(p\%\) 이었다. 이 퀴즈대회에 출전했던 사람 중에서 한 명을 임의로 택할 때, 이 사람이 세 번째 문제에서 탈락했을 확률은 두 번째 문제에서 탈락했을 확률의 \(\displaystyle \frac{1}{2}\) 배와 같다고 한다. 이 때, 자연수 \(p\) 의 값을 구하시오.

 



-->