일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수학2
- 미분
- 경우의 수
- 중복조합
- 함수의 그래프와 미분
- 로그함수의 그래프
- 수학질문답변
- 수열의 극한
- 기하와 벡터
- 여러 가지 수열
- 수능저격
- 수만휘 교과서
- 접선의 방정식
- 확률
- 도형과 무한등비급수
- 함수의 연속
- 수열
- 이차곡선
- 수악중독
- 함수의 극한
- 정적분
- 적분
- 심화미적
- 행렬
- 수학1
- 행렬과 그래프
- 이정근
- 미적분과 통계기본
- 적분과 통계
- 수학질문
- Today
- Total
목록이항계수 (8)
수악중독
$1$부터 $15$까지의 자연수가 각각 하나씩 적혀 있는 정육면체 모양의 검은 블록 $6$ 개와 흰 블록 $9$ 개가 있다. 이 $15$ 개의 블록을 일렬로 빈틈없이 늘어 놓을 때, 색이 달리지는 곳의 개수를 $a$ 라 하자. 예를 들어, 그림과 같이 $15$ 개의 블록을 일렬로 빈틈없이 늘어 놓은 경우 $a=5$ 이다. 이와 같이 $15$ 개의 블록을 일렬로 빈틈없이 늘어 놓는 모든 경우에 대하여 $a$ 값의 합은 $n \times 14!$ 이다. 자연수 $n$ 의 값은? ① $100$ ② $104$ ③ $108$ ④ $112$ ⑤ $116$ 정답 ③
다음은 다항식 $(2+3x)^{20}$ 을 전개한 식에서 계수가 가장 큰 항을 구하는 과정이다. 이항정리를 이용하면 $(2+3x)^{20} = \sum \limits_{r=0}^{20} \;_{20}{\rm C}_r \times 2^{20-r} \times (3x)^r$이므로 $x^r$ 의 계수를 $a_r\; (r=0, \;1, \;2, \; \cdots, \; 20)$ 라 하면$a_r= \;_{20} {\rm C} _r \times 2 ^{20-r} \times 3^r$이다.$\dfrac{a_{r+1}}{a_r}=(가)\; (r=0, \;1, \;2, \; \cdots, \; 19)$ 이므로 $\vdots$$r$ 의 값이 $(나)$ 일 때, $a_r$ 의 값이 최대이다. 위의 과정에서 (가)에 알맞은 ..
다항식 \(\sum \limits_{k=1}^{10} (1+x)^k\) 의 전개식에 대한 의 설명 중 옳은 것을 모두 고르면? ㄱ. 상수항은 \(10\) 이다. ㄴ. 상수항을 포함한 모든 계수의 합은 \(2046\) 이다. ㄷ. \(x^n\) 의 계수는 \( _{11} {\rm C} _{n+1}\) 이다. (단, \(n=1,\;2,\; \cdots ,\; 10\)) ① ㄱ ② ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
\(\left ( x^2 + \sqrt{2} \right ) ^{2n} \) 의 전개식에서 계수가 자연수인 항의 계수의 합은? ① \(\dfrac{\left ( 1+ \sqrt{2} \right )^{n-1} + \left ( 1-\sqrt{2} \right )^{n-1} }{2} \) ② \(\dfrac{\left ( 1+ \sqrt{2} \right )^{n} + \left ( 1-\sqrt{2} \right )^{n} }{2} \) ③ \(\dfrac{\left ( 1+ \sqrt{2} \right )^{n} - \left ( 1-\sqrt{2} \right )^{n} }{2} \) ④ \(\dfrac{\left ( 1+ \sqrt{2} \right )^{2n} + \left ( 1-\sqrt{2}..
다음을 이용하여 \( \left( {}_{12} {\rm C} _ 0 \right) ^ 2 + {(}{}_{12} {\rm C}_1 )^2 + {(}{}_{12} {\rm C} _2 ) ^2 + \cdots + {}({}_{12} {\rm C} _{12} ) ^2 \) 을 간단히 하면? (가) \( (1 + x ) ^{24} = ( 1+x )^{12} (1+x)^{12} \)(나) \( _n {\rm C} _r {=}{}_ n {\rm C} _ {n-r} \) ( \(n\) 은 자연수, \( r \) 는 정수, \( 0 \leq r \leq n \) ) ① \( 2^{12} \) ② \( _{24} {\rm P} _{12} \) ③ \( _{24} {\rm C} _{12} \) ④\( {(}{}_{24}..
다음은 \(n\) 이 소수일 때, \( _{2n} {\rm C} _n -2\) 는 \(n^2\) 의 배수임을 증명한 것이다. \((1+x)^{2n} = \sum \limits _{k=0}^{2n} {_{2n} {\rm C} _{k} x^k }\) 에서 \((가)\) 의 계수는 \(_{2n} {\rm C} _n \) 이다. 한편 \({\left( {1 + x} \right)^n}{\left( {1 + x} \right)^n} = \left( {\sum\limits_{k = 0}^n {_n{{\rm{C}}_k}{x^k}} } \right)\left( {\sum\limits_{k = 0}^n {_n{{\rm{C}}_{n - k}}{x^{n - k}}} } \right)\) 따라서 \(_{2n}{{\rm{C}}..