관리 메뉴


수악중독

미적분과 통계기본_적분_무한급수와 정적분의 관계_난이도 중 본문

(9차) 미적분 I 문제풀이/적분

미적분과 통계기본_적분_무한급수와 정적분의 관계_난이도 중

수악중독 2013. 10. 2. 21:56

그림과 같이 직선 \(y=-2x+4\) 가 \(x\) 축, \(y\) 축과 만나는 점을 각각 \(\rm A, \; B\) 라 하자. 선분 \(\rm AB\) 를 \(n\) 등분한 점을 점 \(\rm B\) 에서 가까운 순서대로 \(\rm P_1 ,\; P_2 , \; P_3 ,\; \cdots, \; P_{{\it n}-1}\) 이라고 하고, 점 \({\rm P}_k \;(k=1,\;2,\;3,\; \cdots,\; n-1)\) 을 지나고 \(y\) 축에 평행한 직선과 직선 \(y=-x+2\) 가 만나는 점을 \(\rm Q_{\it k}\) 라 하자. 삼각형 \(\rm BP_{\it k} Q_{\it k}\) 의 넓이를 \(S_k\) 라 할 때, \(\lim \limits_{n \to \infty} \sum \limits_{k=1}^{n-1} \dfrac{S_k}{n} = \alpha\) 이다. \(30 \alpha\) 의 값을 구하시오.

 

 

 

Comments